
Simple MapReduce with
Ruby and Rinda

Josh Carter
2007@joshcarter.com

MapReduce: Simplified
Data Processing on
Large Clusters

-Google paper by Jeffrey Dean

and Sanjay Ghemawat

2 key functions:

Map: processes a key/value
pair to generate intermediate
key/value pairs

Reduce: merges all
intermediate values associated
with the same intermediate key

Example: counting words
in a big file

Map: Process file, emit
[word,1] pairs

Reduce: Add all values for
same word, emit [word, total]

Done!Reduce
Re-

PartitionMapPartition

The big diagram that explains everything

Data 1

Data 2

IntWorker

Worker Out 1

Data 3

Data 4

IntWorker

Worker Out 2

Data 5

Data 6

IntWorker

Partitioning: we’ll get to
that later... (time permitting)

Now, about Ruby...

Easy way to distribute code
and data: Rinda/DRb

Rinda: provides TupleSpace

Anyone can write to TS

Anyone can take from TS

(See “Blackboard” chapter in The
Pragmatic Programmer)

map_data = Partitioner::simple_partition_data(@data, @map_tasks)
map_tasks = Array.new

(0..@map_tasks - 1).each do |i|
 map_tasks << WorkerTask.new(i + 1, map_data[i], @map)
end

map_data = run_tasks("map", map_tasks)

reduce_data = @partition.call(map_data, @reduce_tasks)
reduce_tasks = Array.new

(0..@reduce_tasks - 1).each do |i|
 reduce_tasks << WorkerTask.new(i + 1, reduce_data[i], @reduce)
end

run_tasks("reduce", reduce_tasks)

Data IntWorker Worker Out 1

1 2 3 4

1

2

3

4

So what’s a task?
class WorkerTask
 attr_reader :task_id, :data, :process

 def initialize(task_id, data, process)
 @task_id = task_id
 @data = data
 @process = process
 end

 def run
 @process.call @data
 end
end the code is just a lambda, and

DRb serializes it for you!

Shipping tasks around
Master:
ts.write(['task', DRb.uri, task])

Worker:
tuple = ts.take(['task', nil, nil])
task = tuple[2]
result = task.run
ts.write(['result', tuple[1],
 task.task_id, result])

Master:
tuple = ts.take(['result', DRb.uri,
 task.task_id, nil])

Less code, more pictures

Master TupleSpace Worker

Partition

Write
Take

Map

Write
Take

Re-partition

Write
Take

Write
Take

Reduce

Example: word count
Map: take string, return one pair
of [word, 1] for each word.
job.map = lambda do |lines|
 result = Array.new

 lines.each do |line|
 next if line.empty?

 line.scan(/\w+/).each do |word|
 result << [word, 1]
 end
 end

 result
end

Example: word count
Reduce: Combine [word, 1] pairs into
[word, count].
job.reduce = lambda do |pairs|
 counts = Hash.new

 pairs.each do |pair|
 word, count = pair[0], pair[1]

 counts[word] ||= 0
 counts[word] += count
 end

 counts
end

Demo
(see, it’s not all boring stuff)

Partitioning: the previous
example only works if all
[word,1] pairs for each word
go to the same reduce task.

Partitioning: master
process is responsible for
divvying up intermediate data
to reduce tasks.
See Partitioner::array_data_split_by_first_entry()

One problem: word count
distributed via MapReduce is
slower than simple local
process.

Reason: problem is I/O
bound already, adding more
I/O just makes it worse!

Solutions: location of the
data in I/O-bound problems
is key. Google keeps the data
local to the servers.

Solutions:

Keep data local to workers.

Don’t send data, ship URLs.

Don’t send code, send system
calls to fast (C, etc.) apps.

Topics not covered:

Worker failure

Ordering guarantees

Skipping bad records

(etc, see paper)

Play with it yourself!
http://multipart-mixed.com/software/
simple_mapreduce_in_ruby.html

http://labs.google.com/papers/
mapreduce.html

