
SDK Tutorial
for Microsoft Windows

April 24, 2000

SDK Tutorial for Microsoft Windows
Copyright © 1999-2000 Icras, Inc. Portions copyright © 1994-1998 General Magic, Inc.

All rights reserved.

No portion of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means—
electronic, mechanical, photocopying, recording, or otherwise—without the written permission of Icras, Inc. (“Icras”)

(version 4/17/00)

License
Your use of the software discussed in this document is permitted only pursuant to the terms in a software license between you
and Icras.

Trademarks
Icras, the Icras logo, DataRover, the DataRover logo, DataRover Remote Access Kit, Magic Cap, the Magic Cap logo, and the
rabbit-from-a-hat logo are trademarks of Icras, Inc. which may be registered in certain jurisdictions. The Magic Cap
technology is the property of General Magic, Inc., and is used under license to Icras, Inc. Microsoft, Developer Studio, Visual
Studio, and Visual C++, are all trademarks of Microsoft Corporation.

All other trademarks and service marks are the property of their respective owners.

Limit of Liability/Disclaimer of Warranty
THIS BOOK IS SOLD “AS IS.” Even though Icras, Inc. has reviewed this book in detail, ICRAS MAKES NO
REPRESENTATION OR WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK. ICRAS SPECIFICALLY DISCLAIMS
ANY IMPLIED WARRANTIES OR MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE AND
SHALL IN NO EVENT BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGE,
INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some states do not allow for the exclusion or
limitation of implied warranties or incidental or consequential damage, so the exclusions in this paragraph may not apply to
you.

Patents
The Magic Cap software is protected by the following patents: 5,611,031; 5,689,669; 5,692,187; and 5,819,306. Portions of
the Magic Cap technology are patent pending in the United States and other countries.

United States Government Restrictions
This product is “commercial item” as that term is defined at 48 C.F.R. 2.101 (OCT 1995) consisting of “commercial
computer software” and “Commercial computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (SEPT
1995) and is provided to the U.S. Government only as a commercial end item. Consistent with 46 C.F.R. 12.212 and 48
C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire this product only with those
rights set forth therein.

Icras, Inc.
955 Benecia Avenue Tel.: 408 530 2900
Sunnyvale, CA 94086 USA E-mail: info@icras.com

Fax: 408 530 2950
URL: http://www.icras.com/

mailto:info@datarover.com
http://www.datarover.com

 . 59
Table of Contents

Chapter 1: Introduction . 7
Introduction to Magic Cap packages .7

About Magic Cap packages .7
Inside a Magic Cap package .8

Overview of the package development process . 9
Understanding the development environment . 10

Developer Studio . 10
Magic Cap Simulator . 10
Bowser Jo . 10
Debugging tools . 11
Object tools . 11

Magic Script . 11
Localization tools . 11

Chapter 2: Magic Developer Quick Start . 13
Building and running packages .14
Cloning packages . 16
Constructing packages in the Magic Cap Simulator . 19

Enabling construction mode .19
Adding new viewable objects .19
Modifying viewable objects .23

Using the authoring tools .23
Using coupons from the Magic Hat . 25

Dumping objects and packages .32
Dumping single objects . 33
Dumping an entire package .36

Modifying the source code . 36
Adding an instance definition to the Objects.odef file 37
Adding a new class to the .cdef file . 38
Defining code to implement methods of new classes 40

Using scripts . 47
Searching with Bowser Jo . 50
Localizing packages . 55

Index .
Icras, Inc. Confidential SDK Tutorial iii

Chapter Table of Contents
iv SDK Tutorial Icras, Inc. Confidential

List of Examples

Example 2-1 Building and running a sample package 14
Example 2-2 Cloning a sample package . 16
Example 2-3 Adding a stamp to a cloned package . 21
Example 2-4 Modifying objects with authoring tools 24
Example 2-5 Modifying objects in the HiWorldPackage 29
Example 2-6 Adding a new class to the source code . 39
Example 2-7 Building a package that performs a specific function 41
Example 2-8 Adding a script to a user interface component 48
Example 2-9 Using Bowser Jo .53
Example 2-10 Localizing the text in a package . 56
Icras, Inc. Confidential SDK Tutorial v

Chapter List of Examples
vi SDK Tutorial Icras, Inc. Confidential

1
Introduction

This chapter introduces you to Magic Cap packages, gives an overview of the package
development process, and describes the Magic Cap development environment. It
contains the following sections:

• Introduction to Magic Cap packages

• Overview of the package development process

• Understanding the development environment

Introduction to Magic Cap packages
Before you begin developing packages, you should understand what a Magic Cap
package is and what it contains.

About Magic Cap packages
Magic Cap software is distributed in packages that contain objects for performing
tasks. A Magic Cap software package is a collection of objects organized to perform
a specific set of user functions. Magic Cap provides several built-in packages—such
as the datebook, notebook, name card file, and mail packages—that provide services
usually handled by application programs on conventional computer systems. In
addition, the Magic Cap platform provides a software development environment—
called Magic Developer—for creating custom third-party packages.

A package’s contents can range from a small set to a large, complex collection,
providing users with a single stamp or an entire application. Some packages are like
conventional applications, with specific purposes such as electronic mail and
personal finance. Other packages perform tasks required by a variety of objects in
Magic Cap; these include user-interface features such as buttons and clocks.
Icras, Inc. Confidential SDK Tutorial 7

Chapter 1 Introduction Introduction to Magic Cap packages
In addition to differences in purpose, Magic Cap packages can also vary in their
structure. Some special purpose packages can contain code that implements certain
features, such as an inventory checker. Other packages might not contain any code
and simply add objects to Magic Cap. And other packages may fall somewhere in
between these two categories.

Inside a Magic Cap package
Inside a Magic Cap package, you will find the following files:

Makefile—A file containing a list of instructions for building a software module.
The filename for the makefile must be PackageName.make . Developer Studio uses
the nmake utility to organize the software build process, and Magic Developer also
uses this system for building Magic Cap packages. The makefile contains Developer
Studio commands that build your package. If you create a new package by cloning
an existing package, Developer Studio creates a makefile that you can use as a
template. You can modify this makefile, if necessary, as you add files to your project.

C++ Source File—A C++ source file defines the code that implements the methods
of any new classes in the package. The suffix of the filename is .cpp . Magic
Developer requires that your package have at least one .cpp file; if your package has
no code, this file may just be an empty file. If a package has only one source file, it
usually has the same name as the package plus a .cpp suffix.

Class Definition File—A file that contains descriptions of classes that are unique to
a given package. The suffix for the filename is .cdef . By convention, the filename is
PackageName.cdef . Class definition files are compiled by the Class Compiler
during the package build process.

Class definition files are usually named after the classes defined within them. If a
package does not define any new classes, it does not need a class definition file.
Packages can have more than one class definition file.

See Chapter 6, “Object Tools,” in the Guide to Development Tools for further details
about the class definition file.

Instance Definition File—A file that describes the objects used by a Magic Cap
package. The suffix for the filename is .odef ; by convention Objects.odef . Each
package must have at least one instance definition file. If a package has more than
one instance definition file, the additional files should have names that end with
.odef . As part of the process of building a Magic Cap package, the Object Compiler
compiles this instance definition file into a package.

The instance definition file contains textual representations of the package’s static
objects. These are the objects the package creates when it is loaded into the Magic
Cap environment. The package usually creates other dynamic objects at runtime, but
they are managed by the Magic Cap environment itself.

See Chapter 6, “Object Tools,” in the Guide to Development Tools for further
information about the instance definition file.
8 SDK Tutorial Icras, Inc. Confidential

Overview of the package development process Chapter 1 Introduction
Localization files—In addition to the .make , .cpp , .cdef , and .odef files, you will
find the following files used for localizing the package:

Locale .Custom.Phrases
Locale .Package.Phrases

Overview of the package development process
Using Magic Developer and the Magic Cap Simulator to create your package is the
first step in the overall package development process. The entire series of steps can
be summarized as follows:

1. Create your package in Magic Developer and the Magic Cap Simulator.

This process involves the following basic steps:

a. In Magic Developer, clone, build, and run a sample package.

b. Construct your package interface by editing the cloned package in the Magic
Cap Simulator.

c. Dump the package from the Magic Cap Simulator to Magic Developer.

d. Make modifications, as necessary, to the source code files.

e. Save the source code files.

f. Build and run your package.

This guide provides step-by-step instructions and examples for performing these
steps. For further detail, see the Guide to Development Tools.

2. Download your packages to your personal communicator.

You can use the WinPCLink tool provided, or use the download.bat script. See
“Downloading a package to a storage card” on page 29 in the Guide to
Development Tools for more information about using the download.bat script.

3. Test your packages on the personal communicator and debug them with
Magic Developer.

See Chapter 5, “Debugging Tools,” in the Guide to Development Tools.
Icras, Inc. Confidential SDK Tutorial 9

Chapter 1 Introduction Understanding the development environment
Understanding the development environment
Magic Developer is a software development environment for creating packages for
Magic Cap. It includes the following components:

Developer Studio
Magic Developer is based on Microsoft’s Developer Studio, an application
development environment for Windows software. Magic Developer extends the
Developer Studio environment with tools for building and testing Magic Cap
packages. See Chapter 2, “Building Software Packages,” in the Guide to Development
Tools for more information.

Magic Cap Simulator
While developing Magic Cap packages, you’ll use a version of Magic Cap running
on the PC called Magic Cap Simulator that lets you create, edit, and specify the
behavior of live objects graphically. This allows you to see and use packages much as
they will appear on personal communicators.

Magic Cap Simulator simulates a personal communicator and allows you to develop
software without having to move your package to an actual communicator every time
you make a change to your package, saving time in the development cycle.

Magic Cap Simulator is useful for two purposes. You can use it to run and test
packages with greater convenience than downloading the package into a
communicator. In addition, you can use it in the software development process to
modify objects and then dump them back as ASCII text in object definition files.

See Chapter 3, “Magic Cap Simulator,” in the Guide to Development Tools for more
information on how to use Magic Cap Simulator to create and modify objects for
your packages.

Bowser Jo
The classes for developing Magic Cap packages are very large and powerful. To help
you navigate through these classes, Icras, Inc. developed Bowser Jo, a tool for viewing
the Magic Cap class hierarchy that runs in a Web browser. See Chapter 4, “Bowser
Jo,” in the Guide to Development Tools for more information.
10 SDK Tutorial Icras, Inc. Confidential

Understanding the development environment Chapter 1 Introduction
Debugging tools
Part of developing a Magic Cap package is the necessary process of finding and fixing
bugs. Magic Developer provides two debugging environments for Magic Cap
package development:

• Developer Studio and the Magic Cap Simulator

• GDB and the communicator

See Chapter 5, “Debugging Tools,” in the Guide to Development Tools for more
information on how to use the debugging tools to develop Magic Cap packages.

Object tools
Object tools translate text descriptions of Magic Cap objects into live, graphical
representations of the objects. The Magic Cap Simulator object tools can also reverse
this operation, converting live objects back to their text representations.

Object tools process two kinds of files, and each package includes at least one file of
each kind (in addition to one or more source files that are processed by conventional
compilers and assemblers). The first kind contains the descriptions of any classes
defined by the package; this is called a class definition file. The second kind, called
the instance definition file, contains descriptions of objects defined by the package.

See Chapter 6, “Object Tools,” in the Guide to Development Tools for more
information on how to use object tools to develop Magic Cap packages.

Magic Script
Magic Cap uses a simple but powerful scripting language called Magic Script to
provide a high-level way of arranging and connecting objects. Magic Script uses a
Java based model of execution. When you create your own packages, you may write
and edit Magic Script in any object definition file. For an example, see the sample
package TicTacToe.

Magic Script is useful in coordinating user-interactions with viewable objects like
buttons. From a performance perspective, writing a script and creating an object
subclass are equivalent. See “Magic Script” on page 96 in the Guide to Development
Tools for more information.

Localization tools
Icras, Inc. provides internationalization support to develop versions of Magic Cap
for different languages. In addition, Magic Developer has tools for localizing Magic
Cap packages for different languages.

See Chapter 7, “Package Localization,” in the Guide to Development Tools for more
information on how to use these localization tools to develop localized versions of
Magic Cap packages.
Icras, Inc. Confidential SDK Tutorial 11

Chapter 1 Introduction Understanding the development environment
12 SDK Tutorial Icras, Inc. Confidential

2
Magic Developer Quick Start

This chapter provides step-by-step instructions and examples for performing basic
package development procedures. It contains the following sections:

• Building and running packages

• Cloning packages

• Constructing packages in the Magic Cap Simulator

• Dumping objects and packages

• Modifying the source code

• Using scripts

• Searching with Bowser Jo

• Localizing packages

Using the information in this guide, you can quickly start developing your own
Magic Cap packages. For more detailed information, see the Guide to Development
Tools.
Icras, Inc. Confidential SDK Tutorial 13

Chapter 2 Magic Developer Quick Start Building and running packages
Building and running packages
Before you run a package in the Magic Cap Simulator, you must build it in Magic
Developer. To do this, follow these steps:

1. Start Developer Studio.

Double-click the Developer Studio icon on the desktop.

2. Select the package you want to build (either a sample package or a cloned
package).

Choose File Open Workspace, then select the desired workspace.

3. Build the package.

Choose Build Build PackageName or press F7.

4. The first time you test a package it will be necessary to establish the executable and
package execution environment. You will only have to do this one time:

a. If you have not already done so, ensure that the default configuration for your
package is "Win32 USA Debug". If this is not the default configuration, select

the Build Set Active Configuration and set the default as specified.

b. Select Project Settings and click the Debug tab.

c. In the "Executable for debug session" text box you need to point to the Magic
Cap Windows Simulator. Do so by clicking the button on the right and
navigating to:

<installation directory>\debug\win32\MagicCap-USA.exe

where <installation directory> is where you installed MagicDeveloper.

d. In the "Program arguments" text box you need to tell the simulator where to
find your package image file. Do so by typing the following:

/install win32\debug\usa\<package name>.package

where <package name> is the name of your package, and then click OK. For
example, assuming that you created a package named MyHelloWorld, the
command line would be:

/install win32\debug\usa\MyHelloWorld.package

e. Select File Save Workspace to save your changes. Below is a sample of the result
when MagicDeveloper is installed in C:\MagicDeveloper.
14 SDK Tutorial Icras, Inc. Confidential

Building and running packages Chapter 2 Magic Developer Quick Start
5. Run the package.

Choose Build Start Debug Go or press F5.

A door labeled with the package name appears in the Magic Cap Simulator
Hallway. When you click the door, it opens and you see the package’s scene.

Example 2-1Building and running a sample package
In this example, you will practice selecting, building, and running a package. You
will select and build the HelloWorld sample package.

1. Start Developer Studio.

2. Select the HelloWorld package.

Choose File Open Workspace, then navigate to the HelloWorld folder and open
HelloWorldPackage.dsw .

3. Build the package.

Choose Build Build HelloWorld or press F7.
Icras, Inc. Confidential SDK Tutorial 15

Chapter 2 Magic Developer Quick Start Building and running packages
4. Run the package.

Choose Build Start Debug Go or press F5.

Magic Developer builds the package. When the build is complete, an AhoyWorld
door appears in the Magic Cap Simulator hallway.

Figure 2-1AhoyWorld door in the Magic Cap Simulator hallway

When you click the door, it opens and you see the Hello World package.

Figure 2-2Hello World package running
16 SDK Tutorial Icras, Inc. Confidential

Cloning packages Chapter 2 Magic Developer Quick Start
Cloning packages
The easiest way to create a Magic Cap package is to clone one of the sample packages
and modify it to suit your needs.

To clone a package, follow these steps:

1. Launch Developer Studio and choose File New.

The New dialog box appears.

2. Select the Projects tab.

3. Choose Magic Cap Package AppWizard in the left panel, then specify the name
and location of the new project and click OK.

The Magic Cap Package AppWizard appears.

4. Check Clone an existing package, then select a package and click Finish.

The New Project Information dialog box appears.

5. Click OK.

A new workspace opens.

Example 2-2Cloning a sample package
In this example, you will practice cloning a package. You will clone the HelloWorld
package you built in Example 2-1 and name it HiWorld.

1. Launch Developer Studio and choose File New.

The New dialog box appears.
Icras, Inc. Confidential SDK Tutorial 17

Chapter 2 Magic Developer Quick Start Cloning packages
2. Select the Projects tab, if it is not already selected.

Figure 2-3Launching the Magic Cap Package AppWizard

3. Enter the following values, then click OK:

The Package AppWizard appears.

Option Value

Left Panel Package AppWizard

Project name HiWorld

Location The samples subdirectory under the directory in which Magic
Developer is located.
18 SDK Tutorial Icras, Inc. Confidential

Cloning packages Chapter 2 Magic Developer Quick Start
Figure 2-4Using the Package AppWizard to clone a package

4. Check Clone an existing package, then select HelloWorld in the Packages
list and click Finish.

The New Project Information dialog box appears.

Figure 2-5The New Project Information dialog box

5. Click OK.

Magic Developer makes a clone of the HelloWorld package, gives the package the
name HiWorldPackage, and stores the cloned package in the directory you
selected in step 3. The HiWorldPackage workspace opens.
Icras, Inc. Confidential SDK Tutorial 19

Chapter 2 Magic Developer Quick Start Constructing packages in the Magic Cap Simulator
6. Choose File Close Workspace and close the HiWorld workspace without saving
it.

You actually use the HiWorldPackage workspace to build HiWorld, so this
workspace is not necessary.

7. Open the HiWorldpackage workspace.

Constructing packages in the Magic Cap Simulator
In the Magic Cap Simulator, you can use various tools and techniques to develop
your package. This process of adding to and changing your package is called
construction. In construction mode, you can create new viewable objects by
dropping them from the Magic Hat, then modify them with coupons dropped from
the Magic Hat and with the Move, Copy, Stretch, and Tinker authoring tools, as
described in the next two sections.

Enabling construction mode
To enable construction mode, follow these steps:

1. In the Magic Cap Simulator Hallway, click the Controls door.

The Controls window opens.

2. Click general.

The General Controls window opens.

3. Under options, check construction mode to switch it on.

The Stamper icon at the bottom of the screen changes into a Magic Hat.

Adding new viewable objects
Objects that have a visual appearance are called viewable objects; they are the visible
building blocks of the user interface. After you build your package, you can modify
its appearance interactively in Magic Cap Simulator, and then store any changes in
the package’s source code.

You can drop the following viewable objects from the Magic Hat to your package:

Stamps—Small pictures used to decorate scenes. You can add stamps to any scene
and position them anywhere you like.

Components—Tools that allow you to build the parts of a package with which users
interact. These objects have been developed to solve a variety of user interface
problems while maintaining a consistent set of user expectations within the Magic
Cap environment.

To add viewable objects to your package, follow these steps:
20 SDK Tutorial Icras, Inc. Confidential

Constructing packages in the Magic Cap Simulator Chapter 2 Magic Developer Quick Start

o
1. Build a package, then run it in Magic Cap Simulator.

See “Building and running packages” on page 14 for details.

2. Turn on construction mode.

See “Enabling construction mode” on page 20 for details.

3. Return to the package you want to modify.

a. Hold down the Ctrl key and click the step-back pointer at the top right
corner of the screen.

A list of scenes you’ve visited recently appears.

b. Click the name of the package to return to the package’s scene.

4. Click the Magic Hat.

The Magic Hat window opens.

5. Place a viewable object in your package.

a. Click stamps or components, depending on the type of object you want t
add.

A window displaying the contents of the top drawer of the selected category
opens.

b. Optionally open another drawer by clicking it, or move to another stack of
drawers by clicking the arrows below the stack.

c. Click the specific object you want to add.

The Stamps or Components window closes, and you can now slide the object
to the desired location in your package.

Note: If you want to add more than one object at the same time, hold down the
Ctrl key when you click the first object. The object is pasted into the scene, but
the object window remains open.

6. Dump the package and its objects back into Magic Developer.

See “Dumping objects and packages” on page 32 for details.

Example 2-3Adding a stamp to a cloned package
In this example, you will practice modifying a cloned package by adding a stamp.
You will build the HiWorld package you created in Example 2-2, and add a smiley
face stamp.
Icras, Inc. Confidential SDK Tutorial 21

Chapter 2 Magic Developer Quick Start Constructing packages in the Magic Cap Simulator
1. Start Developer Studio, then build and run the HiWorld package.

See “Building and running packages” on page 14 for details.

The HiWorld package appears in the Magic Cap Simulator as shown earlier in
Figure 2-2. Notice that the contents of the HiWorld package—including the
label for the black box—are still identical to those of the HelloWorld package.

2. Turn on construction mode.

See “Enabling construction mode” on page 20 for details.

3. Return to the package you want to modify.

a. Hold down the Ctrl key and click the step-back pointer at the top right
corner of the screen.

A list of scenes you’ve visited recently appears.

b. Click the HiWorld scene.

4. Add a smiley face stamp to the HiWorld package.

a. Click the Magic Hat.

Figure 2-6The Magic Hat window

b. Select stamps.

c. Click the smiley face stamp and slide it to the top of the black box that
represents the HiWorld package.
22 SDK Tutorial Icras, Inc. Confidential

Constructing packages in the Magic Cap Simulator Chapter 2 Magic Developer Quick Start
Figure 2-7Smiley face added to the HiWorld package

5. Dump the smiley face object to the log file and import it into the package’s
Objects.odef file.

See “Dumping single objects” on page 33 for details.

Modifying viewable objects
Once you add objects to a package, you can use the authoring tools or coupons to
modify them. In addition, you can create custom images by copying and pasting
graphics from other applications.

Using the authoring tools
Magic Cap’s authoring tools let you to move, copy, stretch, and tinker viewable
objects. Use the tinker tool to display an object’s label and specify its position. You
can also use the tinker tool to set properties for the object, including whether it can
be moved or copied.

To modify a viewable object with the authoring tools, follow these steps:

1. Build and run the package, then turn on construction mode in the simulator.

See “Building and running packages” on page 14 and “Enabling construction
mode” on page 20.

2. Click the Tool holder at the bottom of the screen.

The Pencils Tools window opens.

3. Click the right or left arrow until you see the authoring tools in the Tools
window.

4. Select the tool you want to use.

The Tools window closes, and the selected authoring tool replaces the Tool
Holder icon at the bottom of the screen.
Icras, Inc. Confidential SDK Tutorial 23

Chapter 2 Magic Developer Quick Start Constructing packages in the Magic Cap Simulator
5. Use the selected tool to modify a viewable object:

• Click the move or stretch tool, then drag the object or its edges to move or
stretch it.

• Click the copy tool, then click the object to copy it.

• Click the tinker tool, then click the object to set its properties as described in
“Using the tinker tool” below.

Using the tinker tool
To modify an object with the tinker tool, follow these steps:

1. Click the tinker tool, then click the object you want to modify.

The Tinker window appears.

2. Use the Tinker window to set properties for the object and to select and position
a label. For example:

• Specify whether or not an object can be moved or copied and whether or not
it will appear with a label by selecting or clearing the can move, can copy, and
show label check boxes.

• Specify whether or not an object’s label will appear with a frame by selecting
or clearing the frame label check box.

• Select the location for the label by dragging the word Label to the desired
location on the box that appears above the show label check box.

3. Close the Tinker window by clicking the close box.

4. If you added a label, use the label maker to add or change text for the label. See
“Using text coupons” on page 29 for details.

Example 2-4Modifying objects with authoring tools
In this example, you will modify the HiWorld package by changing the size of the
package’s black box.

1. Build and run the modified HiWorld package you created in Example 2-2.

See “Building and running packages” on page 14 for details.
24 SDK Tutorial Icras, Inc. Confidential

Constructing packages in the Magic Cap Simulator Chapter 2 Magic Developer Quick Start
2. Click the Tool holder at the bottom of the screen, then use the right or left
arrow to display the authoring tools.

Figure 2-8The authoring tools

3. From the authoring tools, select the stretch tool.

The Tools window closes, and the stretch tool becomes the current tool, with the
stretch tool icon replacing the Tool holder icon at the bottom of the screen.

4. Drag the edge of the black box to resize it.

5. When the box is the size you want, click the stretch tool icon at the bottom
of the screen to get out of stretch mode.

Note: If you want to move the black box after you have resized it, use the move
tool. (Follow the steps above, but select the move tool instead of the stretch tool
in step 3.)

6. Dump the modified object to the log file.

See “Dumping single objects” on page 33 for details.

Using coupons from the Magic Hat
Coupons from the Magic Hat let you apply the following intangible attributes to
viewable objects:

• Colors—You can change the color that fills an object by dropping a color coupon
onto it. Most viewable objects accept color coupons. The Colors window also
contains a color grid, which allows you add color coupons to multiple objects
without reopening the Magic Hat each time.

• Sounds—Drop a sound coupon onto an object to specify a digitized or
synthesized sound that will play when the object is tapped. You can drop sound
coupons onto most viewable objects. To hear the sound in a sound coupon, click
the coupon. If you don’t specify a sound, switches and buttons will play the touch
sound when tapped.
Icras, Inc. Confidential SDK Tutorial 25

Chapter 2 Magic Developer Quick Start Constructing packages in the Magic Cap Simulator
• Borders—Use a border coupon to add or change an object’s border. To remove
the border from an object, use the no border coupon. Boxes, fields, the Inspector,
meters, and any class that inherits from HasBorder accept borders.

• Text styles—Use text style coupons to change the text style in text fields and
labels.

• Shadows—Use shadow coupons to add or remove shadows from objects.
Shadows can enhance the appearance of an object. You can drop shadows onto
most viewable objects.

• Extras—Use coupons from the extras category to modify objects in a variety of
ways, including changing line styles.

A coupon has a thick dashed border around it. Each coupon is good for one change
to a viewable object, and you can slide coupons without first getting the move tool.
When you drag a coupon over another object, the object will highlight if it can accept
the coupon. For example, you cannot drop a border onto a stamp, so the stamp does
not highlight when you drag a border coupon over it.

Some objects have multiple parts, and you can drop different coupons onto each
part. For example, boxes have content, border, and label parts. You can drop
different color coupons onto the border, content, and label, thereby setting the
different parts to different colors.

To modify a viewable object with coupons from the Magic Hat, follow these steps:

1. Launch Developer Studio, then build and run a package.

See “Building and running packages” on page 14 for details.

2. Turn on construction mode.

See “Constructing packages in the Magic Cap Simulator” on page 20 for details.

3. Click the Magic Hat.

The Magic Hat window opens, as shown earlier in Figure 2-6.

4. Click the type of coupon you want to use.

A window displaying coupons in the selected category opens.

5. Select a coupon and use it to modify a viewable object.

See the following sections for more information.
26 SDK Tutorial Icras, Inc. Confidential

Constructing packages in the Magic Cap Simulator Chapter 2 Magic Developer Quick Start
Using color coupons
When you select colors, the Colors window opens. This window displays the
available color coupons. You can either click one of these coupons or you can click
the color grid in the lower right corner of the window.

Figure 2-9Colors window

• If you select a single coupon, the Colors window closes and the color coupon you
selected remains on the screen. Drag the coupon onto the object you want to
modify. The coupon disappears and the object is filled with the coupon’s color.

• If you select the color grid, the Colors window closes, and the color grid remains
on the screen. Drag a coupon from the grid onto the object you want to modify.
The object is filled with the coupon’s color, but the grid remains on the screen,
allowing you to add color coupons to other objects without opening the Magic
Hat again. Use the move tool to slide the color grid into the Trash truck when
you are done using it.
Icras, Inc. Confidential SDK Tutorial 27

Chapter 2 Magic Developer Quick Start Constructing packages in the Magic Cap Simulator
Using sounds, borders, or text styles coupons
When you select sounds, borders, or text styles, a window displaying the contents
of the top drawer of the selected category opens. Figure 2-10 shows the Sounds
window with the standard drawer open. To open another drawer, click it. To move
to another stack of drawers, click the arrows below the stack.

Figure 2-10Sounds window

To select a coupon, click it. The window closes, and the coupon remains on the
screen. Drag the coupon onto the object you want to modify.

Using shadows and extras coupons
When you select shadows or extras, a window displaying the available coupons in
the selected category opens. Figure 2-11 shows the Shadows window. You can either
click one of these coupons or you can click the coupon chooser in the lower right
corner of the window.

Figure 2-11Shadows window

• If you select a single coupon, the window closes and the coupon remains on the
screen. Drag the coupon onto the object you want modify. The coupon
disappears and the object is modified based on the coupon you dropped.
28 SDK Tutorial Icras, Inc. Confidential

Constructing packages in the Magic Cap Simulator Chapter 2 Magic Developer Quick Start
• If you select the coupon chooser, the window closes, and the coupon chooser
remains on the screen. Click the arrow keys on the coupon chooser until it
displays the desired coupon. Then drag the coupon from the center of the coupon
chooser onto the object you want to modify. The object is modified based on the
coupon you dropped, but the chooser remains on the screen, allowing you to add
coupons to other objects without opening the Magic Hat again. Use the move
tool to slide the coupon chooser into the Trash truck when you are done using it.

Using text coupons
When you drop a text coupon onto an object, the text displayed in the coupon
replaces the object’s label. You can drop a text coupon on any object that accepts
one—a Telecard, a notebook page, or a name card, for example.

To create a text coupon, follow these steps:

1. Hold down the Ctrl key and click the Keyboard, located at the bottom of the
screen.

The labelmaker appears. The labelmaker is simply the Keyboard with a
labelmaker above it.

2. Click the Keyboard keys to type the desired text for the text coupon.

As you type, the labelmaker creates the text coupon.

Figure 2-12Creating a text coupon with the labelmaker

3. When you are done typing, click the text coupon.

The labelmaker disappears, and the text coupon remains on the screen.

4. Slide the text coupon onto the desired object.

The text you typed in step 2 now replaces the object’s label.

Example 2-5Modifying objects in the HiWorldPackage
In this example, you will add a label to the smiley face stamp you added to the
HiWorldPackage in Example 2-3.
Icras, Inc. Confidential SDK Tutorial 29

Chapter 2 Magic Developer Quick Start Constructing packages in the Magic Cap Simulator
1. Build and run the modified HiWorldPackage you created in Example 2-2.

See “Building and running packages” on page 14 for details.

2. Click the Tool holder at the bottom of the screen.

3. Click the right or left arrow until you see the authoring tools in the Tools
window, shown earlier in Figure 2-8.

The authoring tools appear only when construction mode is turned on. See
“Enabling construction mode” on page 20 for details.

4. From the authoring tools, select the tinker tool (the wrench).

The Tools window closes, and the tinker tool becomes the current tool, with the
tinker tool icon replacing the Tool holder icon at the bottom of the screen.

5. Click the smiley face stamp above the black box.

The Tinker window for the smiley face opens.

Figure 2-13Tinker window for the smiley face
30 SDK Tutorial Icras, Inc. Confidential

Constructing packages in the Magic Cap Simulator Chapter 2 Magic Developer Quick Start

en.
6. Check the show label and the frame label checkboxes.

7. Select the location for the label by sliding the word Label to the desired
location on the box that represents the smiley face.

In this example the label will appear above the smiley face.

Figure 2-14Specifying the position of the label

8. Close the Tinker window.

9. Add text for the label.

a. Hold down the Ctrl key and click the Keyboard at the bottom of the scre

The labelmaker appears.

b. Click the keyboard keys to type Smiley on the labelmaker.

Figure 2-15Creating a text label
Icras, Inc. Confidential SDK Tutorial 31

Chapter 2 Magic Developer Quick Start Dumping objects and packages
c. When you are done typing, click the text coupon.

The labelmaker disappears, and the text coupon remains on the screen.

d. Slide the text coupon onto the smiley face’s label.

Figure 2-16Text coupon added to the smiley face’s label

Note: You must drop the text coupon onto the label area—not the smiley face
stamp itself. If you selected frame label in step 6, you will see the label frame into
which you must drop the text coupon. If you did not select frame label, you will
not see a label frame; you must estimate where the frame is (based on the position
you selected in step 7) and drop the text coupon onto that location.

10. Dump the modified object to the log file.

See “Dumping single objects” on page 33 for details.

Dumping objects and packages
After you have constructed a package in the Magic Cap Simulator, you can dump it
back into Magic Developer, where you can make any necessary modifications to the
package’s source files. You can then build and run your package.

The procedure you use to dump a package from the Magic Cap Simulator to Magic
Developer varies, depending on whether you want to dump a single object or the
entire package.

• Object dumping is useful when you are changing or adding single objects at a time
to your package. See “Dumping single objects” on page 33.

• Package dumping is useful when you have made wholesale changes to your
package’s interface. See “Dumping an entire package” on page 35.
32 SDK Tutorial Icras, Inc. Confidential

Dumping objects and packages Chapter 2 Magic Developer Quick Start
Dumping single objects
To dump a single object from the Magic Cap Simulator and merge it into your
source code, follow these steps:

1. In the Magic Cap Simulator, inspect the object that you want to dump.

a. Choose Examine Show Inspector.

The Inspector opens. This window displays a list of the current hierarchy of
viewable objects, called the view list.

Figure 2-17The Inspector window

b. Click the question mark in the top corner of the Inspector.

The Inspector minimizes.
Icras, Inc. Confidential SDK Tutorial 33

Chapter 2 Magic Developer Quick Start Dumping objects and packages

er
c. Click the object that you want to dump.

The object that you clicked becomes the Inspector’s target object, and the
Inspector window now displays its fields. Figure 2-18 shows the Inspector
window displaying the fields for the smiley face stamp that you added to the
HiWorld package in Example 2-3.

Figure 2-18Inspector window listing the fields for the smiley face

2. Choose Examine Dump Inspector Target.

The text representation of the selected object is dumped to the log file.

3. Paste the dumped objects into the Objects.odef file.

a. In Developer Studio, click the FixUpLogFile icon on the Magic Develop
toolbar.

Magic Developer opens a new window which contains a copy of the Log file.
34 SDK Tutorial Icras, Inc. Confidential

Dumping objects and packages Chapter 2 Magic Developer Quick Start
Figure 2-19Use the Magic Developer toolbar to open the Log file

b. Copy the dumped object to the clipboard.

c. Open the Objects.odef file, then replace the object definition with the
copy on the clipboard and save the file.

Figure 2-20Copy object definitions from the Log file to Objects.odef

4. Save the Objects.odef file.

5. Build and run the modified package.

Dumping an entire package
To dump an entire package from the Magic Cap Simulator and merge it into your
source code, follow these steps:

When you click
the
FixUpLogFile
icon...

...Magic Developer
displays the
contents of the
Log file in a new
window

Copy the object
definition to the
clipboard...

...then paste it over
the existing
object definition
in Objects.odef
Icras, Inc. Confidential SDK Tutorial 35

Chapter 2 Magic Developer Quick Start Modifying the source code
1. Dump the package from the Magic Cap Simulator.

a. Choose Examine Dump Package in the Magic Cap Simulator.

A dialog box lets you specify the location and name of a file.

b. Specify the location and name of the dump file, then click Save.

c. Quit the Magic Cap Simulator and return to Developer Studio.

2. Import the package into Magic Developer by doing either of the following:

• Delete Objects.odef and rename the dump file to Objects.odef .

• Open the dump file and Objects.odef , then copy each object instance from
the dump file into Objects.odef . This technique lets you preserve any
comments in your source code.

3. Save the files and rebuild the package.

Modifying the source code
Magic Cap software is constructed with conventional software development tools
and some unique tools developed by Icras. These tools implement the Magic Cap
object model by preparing source files for the C/C++ compiler and by binding
together the compiled package.

The planning and design process usually involves building a Magic Cap package
from existing classes. The actual C programming you will do occurs when you have
to develop new classes or override the methods of an existing class, as described in the
following sections.

Adding an instance definition to the Objects.odef file
Your package must include at least one instance definition file to be compiled by the
Object Compiler. For the purposes of grouping or managing large numbers of
objects, you may need to add instance definitions to your package.

Figure 2-21 shows an example of an instance definition.

Figure 2-21Instance definition in an Objects.odef file

Each instance definition includes three parts:
36 SDK Tutorial Icras, Inc. Confidential

Modifying the source code Chapter 2 Magic Developer Quick Start
Instance header—A single line that consists of the keyword instance , followed by
the name of the object’s class, followed by a symbolic tag that must be unique for
this package, followed by an optional object name which may contain spaces and is
enclosed by single quotes, ending with a semicolon. The unique tag for
SoftwarePackageContents must be contents .

Body—One or more lines that list the object’s fields and their values.

Instance footer—A single line that consists of the keywords end instance
followed by a semicolon.

To add a new instance definition, follow these steps:

1. Build the package to which you want to add the instance definition.

See “Building and running packages” on page 14 for details.

2. Choose File Open, and open the Objects.odef file.

3. Add the new instance definition, using the syntax described above.

4. Save the Objects.odef file and close it.

5. Build and run the modified package.

Adding a new class to the .cdef file
If your package includes any new classes, as most packages do, you must define them
in a class definition file to be compiled by the Class Compiler. Figure 2-22 shows an
example of a class definition.

Figure 2-22Class definition in a .cdef file

Each class definition includes four parts:

Class header—One or more lines that consist of the keywords define class ,
followed by the name of the new class, optionally followed by other information
about the class.

Superclass designation—The keywords inherits from , followed by the name of
the class’s immediate superclass.

Body—One or more lines that list the class’s fields, operations, and attributes.
Overridden methods are specified with overrides .

Footer—A single line that consists of the keywords end class followed by a
semicolon.
Icras, Inc. Confidential SDK Tutorial 37

Chapter 2 Magic Developer Quick Start Modifying the source code
See Chapter 6, “Object Tools,” in the Guide to Development Tools for further
information about class definition files and their syntax.

To add a new class, follow these steps:

1. Build the package to which you want to add the class.

See “Building and running packages” on page 14 for details.

2. Choose File Open, and open the .cdef file.

3. Add the new class, using the syntax described above.

4. Save the .cdef file and close it.

Note: When you create an instance of a class, the .odef file must contain a read
statement that reads in the file that contains the definition of that class. For
example, read "MagicCap.cdef" allows class definitions to be read in for all
system classes, while read "HelloWorld.cdef" allows Greeter objects to be
created in the HelloWorld sample package.

5. Build and run the modified package.

Example 2-6Adding a new class to the source code
In this example, you will add a new class Face to the source code for the HiWorld
package.

1. Build the modified HiWorldPackage you created in Example 2-2.

2. Choose File Open, and open the Hiworld.cdef file.

3. Add a new class Face that inherits from class Stamp .

Figure 2-23Adding a new class to the Hiworld.cdef file
38 SDK Tutorial Icras, Inc. Confidential

Modifying the source code Chapter 2 Magic Developer Quick Start
4. Save the Hiworld.cdef file and close it.

5. Modify the objects in the Objects.odef file to use the new classes.

a. Choose File Open, and open the Objects.odef file.

b. In the Objects.odef file, modify the instance definition for the smiley face
to use class Face instead of class Stamp .

Figure 2-24Changing the smiley face object instance definition

6. Save the Objects.odef file and close it.

7. Build and run the modified package.

Defining code to implement methods of new classes
If your package includes any new classes, you must define the code that implements
the methods of the new classes in C++ files. You can arrange your source code in any
collection of files. Magic Developer requires the .cpp suffix.

Although you can write most of a .cpp file in standard C, you must be aware of these
important special elements:

• #include statements are used to include a number of files provided with Magic
Developer; see the sample packages for the exact list of files to be included. You
might also have your own header files that would be referenced with an include
statement.

• The file must include a statement that specifies the class, and the class name in
this statement must match your class name exactly, including case. If the class
names do not match, your package may not compile. If you define more than one
class, make sure that you set the class name correctly for each method. You can
have as many of these class specifiers as you need, switching from one class to
another before each method if necessary.

• Each function declaration for a method begins with the keyword Method .

• In Magic Cap, each method’s name is the name of the class, followed by an
underscore, followed by the operation name (as defined in the operation
statement in the class definition file). The Class Compiler uses this convention to
match operations to C++ functions. Of course, your source code can have
functions that are not methods, and ordinary C++ rules apply to them.
Icras, Inc. Confidential SDK Tutorial 39

Chapter 2 Magic Developer Quick Start Modifying the source code
• The first parameter to every method is an object reference number. For
convenience, this parameter is never declared in the class definition file. However,
it must be included when you declare the methods in the source files, or the
compiler will not know about it.

Example 2-7Building a package that performs a specific function
In this example you will practice cloning and modifying a package. You will build a
temperature converter that converts from Fahrenheit to Celsius and vice versa. If you
change a number in either system (Fahrenheit or Celsius), the converter will
automatically convert it to the other system.

1. Start Developer Studio.

2. Clone the EmptyPackage package, giving the new package the name
TemperatureExample.

3. Build and run the TemperatureExample package.

4. The first time you test a package it will be necessary to establish the
executable and package execution environment. You will only have to do this
one time:

a. If you have not already done so, ensure that the default configuration for your
package is "Win32 USA Debug". If this is not the default configuration, select

the Build Set Active Configuration and set the default as specified.

b. Select Project Settings and click the Debug tab.

c. In the "Executable for debug session" text box you need to point to the Magic
Cap Windows Simulator. Do so by clicking the button on the right and
navigating to:

<installation directory>\debug\win32\MagicCap-USA.exe

where <installation directory> is where you installed MagicDeveloper.

d. In the "Program arguments" text box you need to tell the simulator where to
find your package image file. Do so by typing the following:

/install win32\debug\usa\<package name>.package

where <package name> is the name of your package, and then click OK. For
example, assuming that you created a package named MyHelloWorld, the
command line would be:

/install win32\debug\usa\MyHelloWorld.package

e. Select File Save Workspace to save your changes.
40 SDK Tutorial Icras, Inc. Confidential

Modifying the source code Chapter 2 Magic Developer Quick Start

5. In the Magic Cap Simulator, enter construction mode.

6. Add two meters to the TemperatureExample package (drag and drop a meter
to the TemperatureExample package twice).

The meter is located in the choices drawer in the Components window. See
“Adding new viewable objects” on page 20 for details.

7. Dump the package to the log file.

See “Dumping an entire package” on page 35 for details.

8. Tie both meters together.

a. Define a converter class (TemperatureConverter) that converts between
Fahrenheit and Celsius, then add this class to the
TemperatureExample.cdef file, as shown in Figure 2-25.

• The class should be defined with two fixed fields: Fahrenheit and
Celsius .

• Flag getter generates the auto-getter methods Fahrenheit and
Celsius for both fields.

• The methods return the value of the fields.

Figure 2-25Adding class TemperatureConverter to the .cdef file
Icras, Inc. Confidential SDK Tutorial 41

Chapter 2 Magic Developer Quick Start Modifying the source code

s. In
b. Add the two meters as subviews of the Scene object in the Objects.odef
file, as shown in Figure 2-26.

Figure 2-26Adding the meters as subviews of scene

c. Create instance definitions for the two meters and the converter and add them
to the Objects.odef file, as shown in Figure 2-27.

• Use the instance of the converter class as the target for both meter
other words, link the meter to its target.

• Add the temperature conversion with the target attributes
operation_Fahrenheit and operation_Celsius .
42 SDK Tutorial Icras, Inc. Confidential

Modifying the source code Chapter 2 Magic Developer Quick Start
The definition and implementation of the class TemperatureConverter are
described in the following substeps.

Figure 2-27Adding object instance definitions for the meters and
converter
Icras, Inc. Confidential SDK Tutorial 43

Chapter 2 Magic Developer Quick Start Modifying the source code
d. Implement the methods of the new class TemperatureConverter in a C++
source file, as shown in Figure 2-28. In this file, you will implement the
custom setters that do the conversions (f=(9/5)c+32 and c=(5/9)(f-32)) and
set the value into the fields. These setters are named Set FieldName . Method
SetFahrenheit converts from Fahrenheit to Celsius. Method SetCelsius
converts from Celsius to Fahrenheit.

Figure 2-28C++ source file for the TemperatureExample package

e. Choose File Save to save the changes to the files.
44 SDK Tutorial Icras, Inc. Confidential

Using scripts Chapter 2 Magic Developer Quick Start
9. Build and run the modified package.

Figure 2-29 shows the finished TemperatureExample package. When you change
the temperature on either meter (by clicking - or +), the other meter will change
accordingly.

Figure 2-29TemperatureExample Temperature Conversion package

Note: Every control (including a meter) has a controlFlags word. The lower
nibble of the upper word (mask: 0x000F 0000) denotes the type of data this
meter tracks. The meter in the Magic Hat has this as 0 (object). More common
values would be 4 (fixed), 5 (unsigned short), or 6 (signed short). If the meter
displays fixed values, you must set the TemperatureConverter object to use
fixed-point math also. The fixed-point methods are in Math.cdef .

Using scripts
Magic Cap scripting for objects uses a script language that is compiled when a
package is built. You can write and edit Magic Cap scripts in instance definition files;
they will be assembled as part of the build process. If your script has syntax errors,
you will receive error messages when your instance definition file is compiled.

To attach a script to an object, follow these steps:

1. Choose File Open, and open the Objects.odef file.

2. Attach the script to the object’s instance definition.

Use either the term script or the term ScriptedMethod . For example, the
following two lines have the same effect:

Instance Button makeLikeThis ’Sounds like’
Action (script scriptTag)

Instance Button makeLikeThis ’Sounds like’
Action (ScriptedMethod scriptTag)
Icras, Inc. Confidential SDK Tutorial 45

Chapter 2 Magic Developer Quick Start Using scripts
3. Add the script itself to the Objects.odef file.

The skeleton for a script is as follows:

script scriptTag
script prototype is [<prototype>]

script statements
end script;

Note the following:

• If a script omits its prototype statement, it is assumed to have the same
prototype as method Action , which takes a Reference and returns void .
Scripts must specify their prototypes if the method to which they are attached
has a different prototype.

• If a script needs to return something, it must include a return statement.
Scripts can have more than one return statement.

• Script statements must end with semicolons.

See Chapter 6, “Object Tools,” in the Guide to Development Tools for further
details about scripting for objects and Magic Script, including a description of the
script language, the Java virtual machine byte codes its script interpreter uses, and
the underlying object format its scripts use.

Example 2-8Adding a script to a user interface component
In this example, you will practice adding a script to a user interface component. You
will add a button and a slider—a user interface component that allows users to
control continuously adjustable levels—to a package.

1. Start Developer Studio.

2. Clone the EmptyPackage package, giving the new package the name
SimpleControl.

3. Build and run the SimpleControl package.

4. The first time you test a package it will be necessary to establish the
executable and package execution environment. You will only have to do this
one time:

a. If you have not already done so, ensure that the default configuration for your
package is "Win32 USA Debug". If this is not the default configuration, select

the Build Set Active Configuration and set the default as specified.

b. Select Project Settings and click the Debug tab.

c. In the "Executable for debug session" text box you need to point to the Magic
Cap Windows Simulator. Do so by clicking the button on the right and
navigating to:

<installation directory>\debug\win32\MagicCap-USA.exe

where <installation directory> is where you installed MagicDeveloper.
46 SDK Tutorial Icras, Inc. Confidential

Using scripts Chapter 2 Magic Developer Quick Start
d. In the "Program arguments" text box you need to tell the simulator where to
find your package image file. Do so by typing the following:

/install win32\debug\usa\<package name>.package

where <package name> is the name of your package, and then click OK. For
example, assuming that you created a package named MyHelloWorld, the
command line would be:

/install win32\debug\usa\MyHelloWorld.package

e. Select File Save Workspace to save your changes.

5. In the Magic Cap Simulator, enter construction mode.

6. Add a button and a slider to the SimpleControl package.

a. Click the Magic Hat.

b. Select components.

The Components window opens.

c. Hold down the Ctrl key and click a button to drop it on the empty package.

d. Click the choices drawer to open it.

e. Click a slider.

The Components window disappears.

f. Drag the button and slider to the desired locations in the package.

g. Create a text coupon with the text Slide to the end and drop it on the
button. See “Using text coupons” on page 29 for details.

h. Tinker the slider to turn its label off. See “Using the tinker tool” on page 24.

Figure 2-30 shows the button and slider added to the SimpleControl
package.

Figure 2-30Button and slider added to the SimpleControl package
Icras, Inc. Confidential SDK Tutorial 47

Chapter 2 Magic Developer Quick Start Using scripts
7. Dump the package back into Magic Developer and merge it with your source
code.

See “Dumping an entire package” on page 35 for details.

8. Add an action to the button in the SimpleControl package.

a. Choose File Open, and open the Objects.odef file.

b. Attach the maxOut script to the Button object and add the script itself in the
Objects.odef file, as shown in Figure 2-31. This script adds an action
affecting the slider to the button—the slider will slide to the right end when
the button is pushed.

c. Name the Button instance pushbutton and the Slider instance slider ,
then change references to these instances in the subview fields of the
packageScene instance.

Figure 2-31Modified Objects.odef file

Change subview
field values to
reflect the
instance names

Supply names for
the instances

Attach the script
to the
pushbutton
instance

Define the
maxOut script
48 SDK Tutorial Icras, Inc. Confidential

Searching with Bowser Jo Chapter 2 Magic Developer Quick Start
9. Build and run the modified SimpleControl package.

Searching with Bowser Jo
Bowser Jo is an HTML-based class browser for Magic Cap classes. With it you can
look up a class and access information about that class, including its superclasses,
subclasses, fields, operations, and attributes. You can also specify a search string and
search for classes, methods, and fields associated with that string. In order to use
Bowser Jo, you must have a Java-enabled web browser installed on your system.

To search with Bowser Jo, follow these steps:

1. Launch your web browser.

2. Open the file index.html in the docs\htmlhelp subdirectory of the directory
in which Magic Developer is installed.

Your web browser loads an HTML page for Bowser Jo that displays “Magic Cap
Alphabetical Class Index ‘A’”.

Figure 2-32Bowser Jo home page
Icras, Inc. Confidential SDK Tutorial 49

Chapter 2 Magic Developer Quick Start Searching with Bowser Jo

es

d.
3. Use Bowser Jo to search either alphabetically or by string matching:

• To search alphabetically, click the letter of the alphabet corresponding to the
class, then click the class and the element within the class for which you want
information.

• To search by string matching:

a Select methods, fields, or classes in the first drop-down list.

b Select containing, equaling, or starting with in the second drop-down
list.

c Type the string for which you want to search in the Enter criteria field.

d Optionally check Case Sensitive to perform a case-sensitive search.

Figure 2-33 shows the Bowser Jo window set up to search for class
containing the string button .

Figure 2-33Bowser Jo set up to search for the string button

e Click Search.

Bowser Jo returns a list of methods meeting the criteria you specifie

Figure 2-34Bowser Jo search results window
50 SDK Tutorial Icras, Inc. Confidential

Searching with Bowser Jo Chapter 2 Magic Developer Quick Start

rch
f Display reference information by double-clicking the name in the sea
results window.

Bowser Jo displays the information you specified.

Figure 2-35Bowser Jo displaying information about the Button class

Figure 2-35 shows the first screen of reference information for the class Button .
The reference information consists of the following:

• A list of classes from which the class inherits. The class inherits directly from
the first class listed (in this example, Stamp) and inherits certain attributes
from the other (mixin) classes (in this example HasBorder and
HasTimedAction).

• The class’s subclasses (the list of classes on the right of the screen).

• A hierarchy of the class’s direct superclasses (in this example Object -<
Viewable -< Stamp -< Button). Click on a superclass to display the class
definition for that class.

• A list of operations belonging to the class.

• A list of fields belonging to the class and each of its superclasses; fields
belonging to the superclasses are listed first, with the fields belonging only to
the class itself appearing at the end of the list.

• A list of attributes belonging to the class.
Icras, Inc. Confidential SDK Tutorial 51

Chapter 2 Magic Developer Quick Start Searching with Bowser Jo

e

e

• The instance definition for the class.

• The class definition for the class.

Use the scroll bar to scroll through the information. Click on a class, operation,
field, or attribute name to display further information about that item.

Example 2-9Using Bowser Jo
This example is an exercise in finding classes and subclasses in Magic Cap. You will
practice navigating the Magic Cap class hierarchy and accessing reference
information using Bowser Jo.

Here are some questions that you might want to answer by using Bowser Jo:

1. How can you set an animation to turn right when it hits any wall?

a. Display the reference information for class Animation (find the class in the
Magic Cap Alphabetical Class Index and click on the class name). Se
“Searching with Bowser Jo” on page 49 for details.

b. Locate canTurnRight in the fields list.

c. Set the value for canTurnRight to value true.

2. What are the subclasses of class Window.

a. Display the reference information for class Window (find the class in the
Magic Cap Alphabetical Class Index and click on the class name). Se
“Searching with Bowser Jo” on page 49 for details.

b. The information window lists all the subclasses for class window on the right
of the screen.

3. What are the fields that class SimpleActionButton has but class Button does
not?

a. Display the reference information for class SimpleActionButton (find the
class in the Magic Cap Alphabetical Class Index and click on the class
name). See “Searching with Bowser Jo” on page 49 for details.

b. Notice that Button is a superclass of SimpleActionButton .
52 SDK Tutorial Icras, Inc. Confidential

Searching with Bowser Jo Chapter 2 Magic Developer Quick Start

e

 See
c. Scroll down to the fields list. The last two fields—target and operation —
belong only to class SimpleActionButton , not to any of its superclasses.

Figure 2-36Field list for class SimpleActionButton

4. What are the mixin classes from which class Viewable inherits?

a. Display the reference information for class Viewable (find the class in the
Magic Cap Alphabetical Class Index and click on the class name). Se
“Searching with Bowser Jo” on page 49 for details.

b. Click the superclasses of class Viewable to display information about these
classes. You will find that all superclasses of class Viewable except Object
are mixin classes.

5. What operations does class ObjectList override?

a. Display the reference information for class ObjectList (find the class in
the Magic Cap Alphabetical Class Index and click on the class name).
“Searching with Bowser Jo” on page 49 for details.

b. Scroll down to the class definition information to find the list of overridden
operations (At, InstallInto, FindElementAfter, etc.)
Icras, Inc. Confidential SDK Tutorial 53

Chapter 2 Magic Developer Quick Start Localizing packages

 See
6. What is the difference in implementation between MakeValid for class
Object and MakeValid for class ObjectList ?

a. Display the reference information for class ObjectList (find the class in
the Magic Cap Alphabetical Class Index and click on the class name).
“Searching with Bowser Jo” on page 49 for details.

b. Notice that class ObjectList inherits from class Object . In other words,
ObjectList inherits all the operations in Object .

c. Scroll down to the class definition information.

d. Notice that the operation MakeValid is overridden. Since MakeValid is
inherited from Object (in which the operation is originally defined), this is
the difference in implementation between the two classes.

Localizing packages
Icras, Inc. can develop localized versions of Magic Cap communicators for different
national markets, and Magic Cap package developers can also develop localized
versions of their packages for these different markets.

The key to developing a localizable Magic Cap package is to isolate localizable
features so that you can localize the package for different languages without
modifying the source code. Magic Developer includes localization tools that help
package developers separate the tasks of feature development and localization.

Much of the effort in localizing a Magic Cap package is in translating text strings.
Example 2-10 illustrates the basic steps for localizing the text in a package. See
Chapter 7, “Package Localization,” in the Guide to Development Tools for
information about localization tools and localization files and complete instructions
for localizing packages.
54 SDK Tutorial Icras, Inc. Confidential

Localizing packages Chapter 2 Magic Developer Quick Start
Example 2-10Localizing the text in a package
In this example, you will practice localizing the text in a package. You will change
the HiWorld package’s text from US English to Japanese.

1. Launch Developer Studio and open the workspace file for the HiWorld
package.

2. Choose Build Set Active Configuration, then specify Win32 Japan Debug.

Figure 2-37The Set Active Configuration dialog box

3. Choose File Open, then open the phrase file for Japan,
Japan.Package.Phrases .

4. Place a // comment before the following line:

dont require phrases for textual fields

5. Build the package by choosing Build Build, or by pressing F7.

Developer Studio displays an error for each missing phrase in the Build window.
Icras, Inc. Confidential SDK Tutorial 55

Chapter 2 Magic Developer Quick Start Localizing packages
6. Update the phrase file by copying the replacement strings from the Build
window and pasting them into the Japan.Package.Phrases file.

Figure 2-38Updating the phrase file

When you are finished, the new phrase file should look similar to the following:

Figure 2-39The updated phrase file

...then paste the replacement
phrase into the new phrase
file

Select a replacement
phrase in the Build
window and copy it
to the clipboard...

The finished phrase file
contains all the
replacement phrases,
indicated with <L>
markers
56 SDK Tutorial Icras, Inc. Confidential

Localizing packages Chapter 2 Magic Developer Quick Start
7. Build and run the package.

8. If you have correctly replaced every phrase, Developer Studio displays no
more errors. In the simulator, you’ll see the <L> strings displayed in the
application. These <L> strings indicate where the translated text will appear.

Figure 2-40The preliminary package localized for Japan

9. Translate the strings marked with an <L> in Japan.Package.Phrases .

10. Convert the translated strings into Unicode.

11. Build the localized package with the translated phrase file.
Icras, Inc. Confidential SDK Tutorial 57

Chapter 2 Magic Developer Quick Start Localizing packages
58 SDK Tutorial Icras, Inc. Confidential

Index

Symbols
.cdef files 8
.cpp files 8
.make files 8
.odef files 8
.Phrases files 9

A
authoring tools 23

B
border coupons 25, 27
Bowser Jo, searching with 50–55
building packages 14–15

C
C++ source files 8
.cdef files 8
class definition (.cdef) files 8
classes, defining 8
cloning packages 16–19
color coupons 25, 26
components 19
construction mode, enabling 19
coupons 25–32

border 25, 27
color 25, 26
extra 25, 27
shadow 25, 27
sound 25, 27
text 25, 27, 28

.cpp files 8

D
debugging 11
Developer Studio 10
dumping

objects 32–36
packages 32–36

E
extra coupons 25, 27
Icras, Inc. Confidential
F
files

.cpp 8

.make 8

.odef 8

.Phrases 9
class definition (.cdef) 8
instance definition (.odef) 8
localization 9

H
HiWorld package

adding a class to source code 39
adding a smiley face stamp 21
building 21
cloning from HelloWorld 16
localizing text in 56
modifying objects in 24, 29

I
instance definition (.odef) files 8

L
localization 9, 11
localizing packages 55–58

M
Magic Cap Simulator

constructing packages in 19–32
construction mode 19
developing packages with 9
overview 10

Magic Developer
developing packages with 9
object tools 11
overview 10

Magic Hat, coupons from 25
Magic Script 11
.make files 8

O
object tools 11
objects

dumping 32–36
SDK Tutorial 59

Index
files for describing 8
viewable 19, 23

.odef files 8

P
packages

building 14–15
cloning 16–19
constructing in Magic Cap Simulator 19–32
developing 9
dumping 32–36
files in 8
localizing 55–58
overview 7
running 14–15

.Phrases files 9

R
running packages 14–15

S
scripts, using 47–50
shadow coupons 25, 27
sound coupons 25, 27
source code, modifying 36–46
source files 8
stamps 19

T
text coupons 25, 27, 28
tinker tool 23, 24
tools

authoring 23
object 11
tinker 23, 24

V
viewable objects

adding 19
components 19
modifying 23
stamps 19
60 SDK Tutorial Icras, Inc. Confidential

	SDK Tutorial
	Introduction
	Introduction to Magic Cap packages
	About Magic Cap packages
	Inside a Magic Cap package

	Overview of the package development process
	Understanding the development environment
	Developer Studio
	Magic Cap Simulator
	Bowser Jo
	Debugging tools
	Object tools
	Magic Script

	Localization tools

	Magic Developer Quick Start
	Building and running packages
	Cloning packages
	Constructing packages in the Magic Cap Simulator
	Enabling construction mode
	Adding new viewable objects
	Modifying viewable objects
	Using the authoring tools
	Using coupons from the Magic Hat

	Dumping objects and packages
	Dumping single objects
	Dumping an entire package

	Modifying the source code
	Adding an instance definition to the Objects.odef file
	Adding a new class to the .cdef file
	Defining code to implement methods of new classes

	Using scripts
	Searching with Bowser Jo
	Localizing packages

	Index

