
Package Development
Guide

Magic Cap 3.1 (Rosemary Release)

April 24, 2000

Package Development Guide
Copyright © 1998-2000 Icras, Inc. Portions copyright © 1997-1998 General Magic, Inc.

All rights reserved.

No portion of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means—
electronic, mechanical, photocopying, recording, or otherwise—without the written permission of Icras, Inc. (“Icras”)

(version 4/4/00)

License
Your use of the software discussed in this document is permitted only pursuant to the terms in a software license between you
and Icras, Inc.

Trademarks
Icras, the Icras logo, DataRover, the DataRover logo, DataRover Remote Access Kit, Magic Cap, the Magic Cap logo, and the
rabbit-from-a-hat logo are trademarks of Icras, Inc. which may be registered in certain jurisdictions. The Magic Cap
technology is the property of General Magic, Inc., and is used under license to Icras, Inc. Microsoft, Developer Studio, Visual
Studio, and Visual C++, are all trademarks of Microsoft Corporation.

All other trademarks and service marks are the property of their respective owners.

Limit of Liability/Disclaimer of Warranty
THIS BOOK IS SOLD “AS IS.” Even though Icras, Inc. has reviewed this book in detail, ICRAS, INC. MAKES NO
REPRESENTATION OR WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK. ICRAS SPECIFICALLY DISCLAIMS
ANY IMPLIED WARRANTIES OR MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE AND
SHALL IN NO EVENT BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGE,
INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some states do not allow for the exclusion or
limitation of implied warranties or incidental or consequential damage, so the exclusions in this paragraph may not apply to
you.

Patents
The Magic Cap software is protected by the following patents: 5,611,031; 5,689,669; 5,692,187; and 5,819,306. Portions of
the Magic Cap technology are patent pending in the United States and other countries.

It’s 4:30 a.m. Do you know where your children are?
This product is “commercial item” as that term is defined at 48 C.F.R. 2.101 (OCT 1995) consisting of “commercial
computer software” and “Commercial computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (SEPT
1995) and is provided to the U.S. Government only as a commercial end item. Consistent with 46 C.F.R. 12.212 and 48
C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire this product only with those
rights set forth therein.

Icras, Inc.
955 Benecia Avenue Tel.: 408 530 2900
Sunnyvale, CA 94086 USA E-mail: info@icras.com

Fax: 408 530 2950
URL: http://www.icras.com/

mailto:info@datarover.com
http://www.datarover.com

Table of Contents

Chapter 1: Introduction to Objects . 7
Objects . 7
Software Packages . 8
Objects in Memory . 8
How Objects are Addressed . 8
Indexicals . 9
Extra Data . 9

Chapter 2: Object Runtime . 11
Memory and Clusters . 11

Clusters . 12
Shadow Clusters . 13

References . 14
Object Relationships . 14

Special Objects . 14
Shared Objects . 14
Ephemeral Objects . 15

Creating and Destroying Objects .16
Creating Objects at Build Time .16
Creating Objects at Runtime .17
Creating New Objects on Storage Cards . 18
Destroying Objects . 19
Using Statically Created Objects .20

Addressing Objects . 20
Addressing Objects at Build Time . 21
Addressing Objects at Runtime .21

References . 21
Indexicals . 22
Class Numbers . 23
Operations . 24

Accessing Object Data . 28
Automatic Field Accessors . 30
Accessors . 31
Making Objects Usable and Storable . 31
Using Accessors . 32
Icras, Inc.Confidential Package Development Guide iii

Table of ContentsTable of ContentsTable of ContentsTable of Contents
Single-Field Accessors . 32
Whole-Object Accessors .34
Direct Accessors . 35
Extra-Data Accessors . 37

Chapter 3: Software Packages . 39
About Software Packages . 39
Kinds of Packages . 41
Packages and Storage Boxes . 42
How Packages Install Objects . 44

The Installation List . 44
The Installation Queue . 45

Package States .47
Loading Packages . 47
Packing and Unpacking . 47
Technical Difficulties . 48
Power Off and On . 49
Removing Packages . 49

Dynamic Linking . 50
Exporting a Package Interface .50
Importing a Package Interface .52

Strong Imports . 52
Weak Imports . 53

Creating a Package . 54
Required Objects . 54
Specifying a Package Content Object . 54
Indexicals . 58

Chapter 4: Viewables . 59
Geometry and Viewable Parts .60

Dots and Boxes . 60
Parts of Viewables . 61

Viewable boxes . 61
Borders . 62
Shadows . 62
Labels . 63

Ordering and Containment . 64
View Hierarchies . 66
X-Y Coordinates . 67

Sample Screen View Hierarchy . 68
Drawing . 70

Redrawing Viewables . 70
Drawing Your Own Viewables .71
Clipping . 71
Highlighting . 72
Colors . 73

Touching Viewables . 73
Overriding Touching Operations .73
iv Package Development Guide Icras, Inc.Confidential

Table of ContentsTable of ContentsTable of ContentsTable of Contents
Sliding and Dropping . 74
DragTrack and StretchTrack . 75

Advanced Touching Information . 75
Setting up the Tool and Target . 76
Touching with the Arranging Tools . 77
Touch Input Objects . 78
Viewables as Tools . 78
Hit Testing . 79

Miscellaneous Viewable Features . 79
Hopping . 80
Borders and Shadows . 80
Images . 80
Visibility . 80
Drawing Notification . 81
Text . 81
Sound . 81
Selection . 81
Searching . 81
Periodic Work . 82
Scribbling and Typing . 82
Extending . 82
Disabling . 83
Orientation . 83
Stamps, Buttons, and Controls . 84

Chapter 5: Scenes . 87
Navigation . 88
Information Windows . 90
Current Scene . 90
Cards, Stacks, and Forms . 90
Scene Additions . 91

Command Additions . 92
Rules Additions . 93
Tools Additions . 93
Stamp Additions . 93

Sending, Imaging, and Filing Scene Contents . 96
Content Proxies . 96

Scene Information in the Package Contents Object . 98
Subclasses of Scene . 98
Scene Flags and Indexicals . 99

Chapter 6: Cards, Stacks, and Forms . 101
About Cards, Stacks, and Forms . 102
Navigation and Scenes . 105
Current Card . 106
Forms . 106
Creating Your Own Form Elements . 109
Stacks and Stack Scenes . 110
Icras, Inc.Confidential Package Development Guide v

Table of ContentsTable of ContentsTable of ContentsTable of Contents
Large Cards and Scrolling . 112
Electronic Mail . 112
Creating Card, Stack, and Form Objects . 112
Flags and Indexicals . 112
Card and Stack Information in the Package Content Object 113
Subclasses of Card and Stack . 113
vi Package Development Guide Icras, Inc.Confidential

1
Introduction to Objects

This chapter provides a brief overview of some fundamental Magic Cap concepts,
including objects, classes, and operations. This overview is suitable for all Magic Cap
programmers.

You should read this chapter as you start programming for Magic Cap. You will
likely find that you don’t remember everything in this chapter on first reading. Later,
as you read the rest of this book and begin programming, you can refer back here for
fundamental definitions and information.

Objects
Magic Cap provides an environment for supporting persistent objects. An object
consists of a structure that includes data elements and a set of actions that operate on
the data. Each object provides interfaces to its actions via operations and to its data
elements via attributes. Internally, objects specify functions that implement
operations and storage locations that implement attributes. These internal functions
are called methods and the storage locations are called fields.

Objects are described by templates called classes. Each class is defined in terms of its
difference from another class, called its superclass. Each class inherits operations and
attributes from its superclasses, and the new class can redefine any operation to
enhance or change its behavior. All classes that define objects ultimately descend
from class Object .

When you call an operation, the method that executes in response to the call is
defined by that object’s class or by one of its superclasses. When an operation is
called, Magic Cap selects the method to run by examining the object’s class and, if
necessary, its superclasses. The object that has its operation called is the responder.
Icras, Inc. Confidential Package Development Guide 1

Software Packages Introduction to Objects
Software Packages
Magic Cap includes several major sets of features, such as the Datebook, Notebook
and Name card file, that provide services usually handled by application programs
on conventional computer systems. In addition to its built-in features, Magic Cap
acts as a platform for additional features to be added. When you program in Magic
Cap, you make software packages, collections of objects that perform functions and
provide features for Magic Cap users. Software packages are often called simply
packages.

Whenever you deliver any Magic Cap software to users, you’ll provide a software
package.

Objects in Memory
Personal communicators based on Magic Cap are designed to keep permanent user
data primarily in RAM rather than on an external storage device such as a hard disk.
This RAM is called persistent memory because it retains its contents whether main
power is turned on or off, as long as some power source is applied (main battery,
backup battery, or AC power). Persistent memory is useful for permanent user data,
such as electronic mail messages, name cards, appointments, and so on.

Sometimes, Magic Cap will encounter an error that cannot be fixed. When this
happens, Magic Cap will reset itself to attempt to return to a stable state. Magic Cap
defines another kind of memory that does not retain its contents when Magic Cap
resets. This kind of memory, called transient memory, is useful for objects that are
created and destroyed within the scope of an executing function, objects that can be
recreated from persistent data, and other temporary objects. When you create new
objects, you can specify whether they should exist in persistent or transient memory.
If you create an object in transient memory, your package must be prepared to
recreate it if Magic Cap resets.

All Magic Cap objects in memory, whether in main RAM, ROM, or on a PCMCIA
card, are collected into groups called clusters. Each object belongs to exactly one
cluster. Like most structures in Magic Cap, clusters are themselves objects. Each
cluster in RAM controls only one kind of memory, either persistent or transient.

How Objects are Addressed
Every object in Magic Cap can be addressed at runtime with a 32-bit value called a
reference. You use an object’s reference when you call one of its operations, get access
to its fields, or pass it as a parameter. When you use a reference, Magic Cap’s object
runtime quickly and efficiently converts the reference into a pointer to the object.

When you define objects at build time, you don’t use references. Instead, you use
instance tags, symbolic names that should represent what the object will be used for.
These objects are assigned reference values automatically at runtime.
2 Package Development Guide Icras, Inc. Confidential

Introduction to Objects Indexicals
Your package can use references to address any object. You will typically see
references as hexadecimal numbers displayed by debugging tools.

Indexicals
Magic Cap has a collection of well-known objects that you can address at build time
and at runtime via special references called system indexicals. Magic Cap defines
indexicals for hundreds of different system objects, such as images, windows, object
lists, scenes, and many more kinds of objects. You can create package indexicals that
define key objects in your own package.

Extra Data
In addition to its fields, every object can have one variable-length area, called its extra
data. The extra data can be any information that can change its length at runtime.
For example, Magic Cap defines many classes that include lists of references. These
lists are usually kept in the objects’ extra data, because the size of the extra data can
vary as the list adds or removes members.

Although every object has only one extra data area, it can be shared among classes in
a class hierarchy as long as the first class in a hierarchy that declares that it will use
the extra data area also defines that it can share the extra data area with subclasses.
For more information about how to use the extra data area of an object, see the
section on the object definition syntax in the "Object Tools" chapter of "Guide to
Magic Cap Development Tools".
Icras, Inc. Confidential Package Development Guide 3

Extra Data Introduction to Objects
4 Package Development Guide Icras, Inc. Confidential

2
Object Runtime

This chapter discusses the Magic Cap object runtime. You should already be familiar
with object oriented design concepts such as classes, methods, inheritance and
overriding methods. Additionally, you should also be familiar with the tools that are
used to create Magic Cap packages. If you are not yet familiar with these tools, see
"Guide to Magic Cap Development Tools".

Magic Cap provides an environment for supporting persistent objects. An object is
a structure that includes data elements and a set of actions that operate on the data.
Each object provides interfaces to its actions via operations and to its data elements
via attributes. Internally, objects specify functions that implement operations and
storage locations that implement attributes. These internal functions are called
methods and the storage locations are called fields.

Objects are described by templates called classes. Each class is defined in terms of its
difference from another class, called its superclass. Each class inherits operations and
attributes from its superclasses, and the new class can redefine any operation to
enhance or change its behavior. All classes that define objects ultimately descend
from class Object .

When you call an operation, the method that executes in response to the call is
defined by that object’s class or by one of its superclasses. When an operation is
called, Magic Cap selects the method to run by examining the object’s class and, if
necessary, its superclasses. The object that has its operation called is the responder.

Memory and Clusters
Personal communicators based on Magic Cap are designed to keep permanent user
data primarily in RAM rather than on an external storage device such as a hard disk.
This RAM is called persistent memory because it retains its contents whether main
Icras, Inc. Confidential Package Development Guide 11

Chapter 2 Object Runtime Memory and Clusters
power is turned on or off, as long as some power source is applied (main battery,
backup battery, or AC power). Persistent memory is useful for permanent user data,
such as electronic mail messages, name cards, appointments, and so on.

To help ensure that this persistent data isn’t damaged, it is protected from change
through a set of internal routines provided by Magic Cap. Packages can’t write
directly to persistent memory. Instead, packages write changes to a buffer area of
memory. Magic Cap updates persistent memory from this buffer area periodically,
ensuring that packages don’t corrupt structures in persistent memory. Because
persistent memory is protected from direct change, writing to it is somewhat slower
than if the memory were not protected.

As a performance enhancement, Magic Cap defines another kind of RAM that is not
protected from change and does not retain its contents when Magic Cap resets. This
kind of memory, called transient memory, is useful for objects that are created and
destroyed within the scope of an executing function, objects that can be recreated
from persistent data, and other temporary objects. When you create new objects, you
can specify whether they should exist in persistent or transient memory. If you create
an object in transient memory, your package must be prepared to recreate it if Magic
Cap resets.

Clusters
All objects in memory, whether in RAM, ROM, or on a PCMCIA card (which
Magic Cap calls storage cards), are collected into groups called clusters. Clusters
group objects belonging to a particular application and can enforce memory policies
-þa cluster can have a size limit, all objects in a cluster can be erased, a cluster may
be considered transient, etc. Every object belongs to exactly one cluster. Like most
structures in Magic Cap, clusters are themselves objects. Each cluster in RAM
controls only one kind of memory, either persistent or transient.

Each object in a cluster occupies a contiguous area of memory. As new objects are
created and others are destroyed, the memory in a cluster can become fragmented,
with many free spaces occurring between the objects. Because each object requires a
contiguous space in memory, a fragmented cluster effectively reduces the amount of
available memory. To relieve this problem, Magic Cap moves objects at reasonable
times to close up the gaps in free space.

Objects in clusters are tracked by special pointers called locators. When an object is
relocated, the locator to that object is updated to reflect the object's new location.
Magic Cap accesses objects by converting references to locators when they are used.

Magic Cap includes two clusters created by the system, called the system persistent
cluster and the system transient cluster. Every package can directly address objects
in the system clusters. In addition to these system clusters, when you create a new
package, your package includes its own persistent cluster and transient cluster.
Packages can also address objects in clusters belonging to other packages. Some
Magic Cap implementations have no transient RAM. On those implementations, all
clusters are persistent.
12 Package Development Guide Icras, Inc. Confidential

Memory and Clusters Chapter 2 Object Runtime
Shadow Clusters
Magic Cap stores many objects in ROM that users must be able to customize and
change. To allow Magic Cap and software packages to change these objects, the
object runtime can store changed versions of ROM-based objects in a special RAM
cluster that is associated with the ROM cluster. This RAM cluster that holds
changed versions of objects is called a shadow cluster.

Every ROM cluster that allows changes to its objects has a shadow cluster associated
with it. When Magic Cap or a package makes changes to an object stored in ROM,
the object runtime modifies a copy of the object in the shadow cluster instead. If the
object is changed again, the copy in the shadow cluster is modified each time the
object is changed.

Shadow clusters are typically kept in transient RAM. Because the contents of
transient RAM are lost when Magic Cap needs to reset, the object runtime
periodically preserves the objects in the shadow cluster by transferring them to
another shadow cluster in persistent RAM. This process of transferring objects from
the transient shadow cluster to the persistent shadow cluster is called committing
the changed objects. The objects themselves are called committed objects. In
contrast, objects in the transient cluster are called uncommitted objects.

The object runtime commits changes at various times. In particular, changes are
committed whenever the user goes to a new scene and whenever the communicator
shuts off. If the communicator unexpectedly loses power, uncommitted changes in
the current scene are lost.

Note that the system objects stored in ROM actually may be found in any of three
clusters: the system source cluster in ROM; the system shadow cluster in RAM,
which contains committed changes to the ROM; and the system changes cluster in
RAM, which contains uncommitted changes to the ROM. These three clusters form
a chain.

When you address an object, the object runtime determines if the object you’re
addressing exists in a cluster that has one or more shadow clusters. If so, the cluster
with uncommitted changes has the most recent versions of objects, followed by the
committed changes, and finally the source. The object runtime automatically finds
the current version of the object from among these clusters.

The object runtime has two three-cluster chains: the system persistent chain and the
package persistent chain. In each case, the first cluster in the chain contains
uncommitted changes, the middle cluster has committed changes, and the last
cluster holds the original versions of the objects.

Note that the same reference is used for all versions of the object, so it is impossible
to directly address one particular version. The reference always addresses the current
value of the object.
Icras, Inc. Confidential Package Development Guide 13

Chapter 2 Object Runtime References
References
Every object in Magic Cap can be addressed at runtime with a 32-bit value called a
reference. You use an object’s reference when you execute one of its operations, get
access to its fields, or pass it as a parameter. When you use a reference, the object
runtime quickly and efficiently converts the reference into a pointer to the object.

When you define objects at build time, you don’t use references. Instead, you use
symbolic names that represent what the object will be used for. These objects are
assigned reference values automatically at runtime. See "Creating Objects at Build
Time" on page 16 for more information.

Your package can use a reference to address any object. Magic Cap defines several
kinds of references that can be used for various special purposes. For more
information on references, see "Addressing Objects" on page 20.

You will typically see references as hexadecimal numbers displayed in the Inspector
and in debuggers.

Object Relationships
Object fields can contain references to other objects. Normally, when you copy an
object, any objects it refers to are also copied. Similarly, when you destroy an object,
any objects it refers to are also destroyed. This is known as a strong reference
relationship. An object that strongly refers to another object is said to own that
object.

When you define a class, you can specify that fields will have a weak reference to
other objects. When you copy an object, objects it weakly refers to are not copied;
the same fields in the object copy will also weakly refer to the same objects as the
original. When you destroy an object, objects it weakly refers to are not destroyed.
An object that weakly refers to another object does not own that object.

Special Objects
Some Magic Cap objects have special properties that help to make more efficient use
of memory, and make writing Magic Cap packages easier. This section discusses
these special types of objects and their relationships with other objects.

Shared Objects
There are certain types of objects, such as images and sounds, that tend to be very
large. Because of their size, having multiple copies of these objects in memory would
be wasteful. To reduce the amount of memory these types of objects take up, they
are usually shared.

Normally, when you copy an object, any objects it strongly refers to are also copied.
When an object that strongly refers to a shared object is copied, the shared object is
not copied. A shared object maintains a reference count to keep track of how many
14 Package Development Guide Icras, Inc. Confidential

Object Relationships Chapter 2 Object Runtime
other objects refer to it. When an object that strongly refers to a shared object is
copied, instead of making a copy of the shared object, the shared object’s reference
count is increased by one.

A shared object can only be referenced by objects in the same cluster the shared
object is in. When a shared object, or an object that refers to a shared object, is copied
into a different cluster, a new shared object is created in that cluster. See "Creating
Objects at Runtime" on page 17 for more information on copying objects.

Normally, when you destroy an object, any objects it strongly refers to are also
destroyed. When an object that strongly refers to a shared object is destroyed, the
shared object’s reference count is decreased by one. If the reference count remains
greater than zero, that means that other objects still contain references to this shared
object, so the shared object is not destroyed. If the reference count reaches zero, no
other objects refer to the shared object, so the shared object is destroyed along with
the other object. See "Destroying Objects" on page 19 for more information on
destroying objects.

Because many objects can refer to and rely on a single shared object, you should not
modify the data contained in a shared object. If you need to make changes to a shared
object, you should make a non-shared copy of the desired object to work with. This
is done by calling the MakeModifiableNear operation. MakeModifiableNear
takes two parameters, a shared object and an example object. MakeModifiableNear
creates a non-shared copy of a shared object in the cluster the example object is
located in. The reference returned by MakeModifiableNear will address the non-
shared copy.

After modifying the copy of the shared object, it is desirable to make the copy a
shared object again, so that if it is subsequently copied, no additional copies of the
object will be made. This is done by calling the MakeSharedNear operation.
MakeSharedNear takes two parameters, a non-shared object and an example object.
MakeSharedNear looks in the cluster the example object is located in for a shared
object that exactly matches the non-shared object. If such a shared object exists, its
reference count is increased by one, and its reference is returned. In this case, the
non-shared object is destroyed, and references to it are no longer valid after
MakeSharedNear returns. If no shared object in the cluster is identical to the non-
shared object, the non-shared object is turned into a shared object.

Shared objects can reference other objects. These objects are said to be owned by
shared. These objects are considered part of the shared object and should not be
modified either.

Ephemeral Objects
Because objects aren’t stored on a stack as conventional variables are, objects don’t
follow the usual storage-class rules of procedural programming languages. Objects
that you create while a function is executing are never automatically destroyed when
the function ends, unlike automatic (local) variables in C. You must normally
destroy them yourself. The exception to this rule is the ephemeral object.
Icras, Inc. Confidential Package Development Guide 15

Chapter 2 Object Runtime Creating and Destroying Objects
Ephemeral objects are extremely short-lived objects. In some respects, ephemeral
objects are similar to static variables in C. Static variables are only valid in certain
program scopes. Similarly, ephemeral objects only exist within a particular chain of
function invocations. Once the top of that call chain is reached, Magic Cap will
reclaim any ephemeral objects created in that chain.

Because ephemeral objects are automatically reclaimed by Magic Cap, you never
explicitly destroy ephemeral objects. For the same reason, you are not allowed to
store references to ephemeral objects in other objects. If you want to save the data
represented in the ephemeral object, you must convert it into a persistent or transient
object. This is done by calling the MoveNear operation. MoveNear takes two
parameters, a responder object and an example object. MoveNear will move the
responder object into the cluster the example object is located in.

You cannot create ephemeral objects directly in your Magic Cap package, but Magic
Cap itself will always use ephemeral objects to return text to your program.

Creating and Destroying Objects
This section discusses creating objects, both at build time and at runtime, and
destroying objects in a running Magic Cap package.

Magic Cap provides two fundamentally different ways to create objects: you can
specify them in an instance definition file, or you can create them programmatically
at runtime. Objects specified in an instance definition file are created when the
package is built and are loaded along with the package. You can create objects
programmatically at runtime by calling various operations defined by Magic Cap.

Objects created at build time by defining them in an instance definition file are said
to be created statically. Objects created programmatically at runtime are said to be
created dynamically.

Creating Objects at Build Time
To create an object statically, you define the object at build time using the name of
its class and a symbolic instance tag, along with values for its fields, in an instance
definition file (an .odef file). This is an example of an object specified in an instance
definition file:

Instance LyricText theyMightBeGiantsVerse;
 textValue: ‘Everything right is wrong again.’;
End Instance;

This example specifies a new object of class LyricText that will be created in the
package. The first line of the instance definition specifies the class of the object,
followed by the object’s instance tag. The instance tag is a symbolic label that
uniquely identifies the instance within the instance definition file’s namespace.
Instances have tags because instance definitions often refer to other definitions in the
file. For example, the definition of a list object contains the instance tags of other
objects, as follows:

Instance SongSet songs;
 firstSong: (Song particleMan);
16 Package Development Guide Icras, Inc. Confidential

Creating and Destroying Objects Chapter 2 Object Runtime
 middleSong: (Song instanbul);
 finale: (Song puppetHead);
End Instance;

Objects created at build time are installed in the package’s persistent cluster.

Instance definitions must include values for every field of the objects they specify.
Because the definition above for an object of class LyricText includes a value for
one field, textValue, we can assume that class LyricText defines only that one field
for its objects. Similarly, the definition for class SongSet should show that class
SongSet defines three fields for its objects.

Objects are uniquely identified by tags. In addition to these required tags, each
object can optionally have a text value called an object name.

Each class specifies how its objects handle their names. Some viewable classes display
their objects’ names to users. For example, the text on a button is the button’s object
name. Other classes don’t display their objects’ names to users. Names for these
objects are useful only for programming and debugging.

Unlike an instance tag, an object name need not be unique. More than one object
in an instance definition file or a running Magic Cap system can have the same
object name. Because of this, you can’t rely on just an object name, or even a class
and object name, to uniquely identify an object in your package or in Magic Cap.

You can name an object in an instance definition by including the text of the name
after the class name and the instance tag, like this:

Instance SongSet songs ’Trios’;
 firstSong: (Song particleMan);
 middleSong: (Song instanbul);
 finale: (Song puppetHead);
End Instance;

Instance Song instanbul ’Not Constantinople’;
 songData: $ 4445 4178;
End Instance;

The song set and song objects defined by this example have object names, ‘Trios’ and
‘Not Constantinople’. Note that the object name is only used in the instance
definition itself; it is not used when an instance with an object name is referenced
from another instance definition.

The names and types of fields for each class are specified in class definition files. For
more information on the format of instance definitions, see the chapter “"Object
Tools"” in "Guide to Magic Cap Development Tools".

Creating Objects at Runtime
Magic Cap provides two ways to make objects dynamically at runtime: you can
create a copy of an existing object, or you can make a new, empty object. Magic Cap
defines several operations for copying objects and several for creating new objects.
You’ll usually make new objects by copying existing ones because the operations that
copy an object also copy the objects it strongly refers to in its fields, which ensures
Icras, Inc. Confidential Package Development Guide 17

Chapter 2 Object Runtime Creating and Destroying Objects
that the new copy is fully functional. For example, when you copy a viewable object
that includes another viewable object contained inside it, the contained object will
also be copied.

The operations that copy objects and create new objects are defined by class Object .
Because all classes in Magic Cap that create objects include class Object as an
ancestor, you can use these calls to create any object you want.

You can use the NewNear and NewTransient operations to create new objects. Call
NewTransient to create a new object in the package transient cluster.

When you call NewNear, you’ll pass an example object. NewNear will then create a
new object in the same cluster as the example object. For example, if you call
NewNear with an example object in the package persistent cluster, the new object
will also be in the package persistent cluster.

When you call NewNear or NewTransient to create a new object, Magic Cap creates
the new object in memory, then calls the new object’s Init operation to give the
object a chance to set up its fields.

Often, you’ll create a new object by copying an existing one using the CopyNear or
CopyTransient operations. These operations are analogous to the New operations
described above. Their names indicate where the newly copied object will be created.
These operations also copy any objects that the copied object strongly refers to.
These operations will not copy objects that the copied object has weak references to.

When you call CopyNear or CopyTransient to create a new object, Magic Cap
creates the new object in memory, then calls the new object’s Copying operation to
give the object a chance to set up its fields. Because these operations also copy any
objects referred to in the copied object’s fields, Magic Cap calls the Copying
operation of each newly copied object.

When you create objects dynamically with a New or Copy operation, the operation
you call will return the reference of the newly created object. You can use this
reference to address the object.

Creating New Objects on Storage Cards
A user can specify that new objects should be created using the memory on a storage
card instead of using Built-in memory. This is known as new items go here. Objects
created in storage card memory are located in a cluster called the new items package.
To make your Magic Cap program respect the user’s preference for where new
objects should be created, you can pass the indexical iNewItemsGoHere as the
example object parameter for NewNear, CopyNear , or MoveNear .

When you use iNewItemsGoHere as the example object, but the new items package
does not exist for whatever reason, Magic Cap will create new objects in the system
persistent cluster. In this instance, if you would rather have objects you create reside
in your package’s persistent cluster, you can call the NewItemNear operation, and
use the reference that is returned as the example object for NewNear, CopyNear , or
MoveNear . NewItemNear takes an example object as parameter self . If the new
18 Package Development Guide Icras, Inc. Confidential

Creating and Destroying Objects Chapter 2 Object Runtime
items package exists, NewItemNear returns iNewItemsGoHere . If the new items
package does not exist, NewItemNear will return the cluster the example object is
located in.

Not all objects should be explicitly created in the new items package. Instead, only
objects that can be filed by the user, such as cards and datebook tasks, should be
created in the new items package. Objects that are attached to these objects should
then be created near the fileable object to be created in the correct place.

Here is an example of how you would create a card object with attachments and
respect the user’s preference for where new items should be created:

Method void
ExampleStackScene_CreateNewCardWithAttachments(Reference self,
 Reference nearThis, Reference attachments)
{
 Reference newCard;

 // Create a new card object in the new items package or in this package.
 newCard = CopyNear(ProtoCard(self), NewItemNear(nearThis));

 // Copy the attachments into the same cluster as the new card.
 AddAttachments(newCard, CopyNear(attachments, newCard));
}

Destroying Objects
Because objects aren’t stored on a stack as conventional variables are, objects don’t
follow the usual storage-class rules of procedural programming languages. Objects
that you create while a function is executing are never automatically destroyed when
the function ends, unlike automatic (local) variables in C. You must destroy them
yourself. Any objects you create in a transient cluster might be destroyed at any time.

You can call Destroy to destroy an object explicitly and free its storage. Because
Destroy is defined by class Object , you can use it with all Magic Cap objects.
When you call Destroy , Magic Cap also destroys any objects that the given object
strongly refers to in its fields. Although Magic Cap provides a garbage collection
system to delete unused objects, you must make sure that you destroy objects that
you create and no longer need.

When you call Destroy to destroy an object, Magic Cap calls the given object’s
Finalize operation to give the object a chance to perform some action before it is
deleted. Because Destroy also destroys any objects strongly referred to in the given
object’s fields, Magic Cap calls the Finalize operation of each referenced object
before it is destroyed.

When an object is about to be destroyed, Magic Cap calls Finalize on the given
object first, then on any objects it strongly refers to, and then destroys the given
object and the objects it strongly refers to. You can use the Finalize call to save
referenced objects from being destroyed by setting the appropriate field to
Icras, Inc. Confidential Package Development Guide 19

Chapter 2 Object Runtime Addressing Objects
nilObject in your Finalize code. Then, when the given object is destroyed, the
object you wanted to save will be left alone because it is no longer referenced by the
destroyed object.

Note: Indexicals are treated specially. When you pass an indexical to Destroy , the
object that the indexical references is not destroyed.

Using Statically Created Objects
Instance tags are only used in instance definition files. You can’t refer to them from
your source code. Because of this, you must take special steps to address statically
created objects in source code. Most of the objects that you create statically should
be designed to be self-sufficient; that is, you shouldn’t have to refer to them from
outside their own operations. Every operation can refer to its responder.

Your package may have a few special objects that you want to create statically, but
still address with operations other than the object’s own. To handle these kinds of
objects, Magic Cap defines a form of global addressing that you can use to address
your package’s statically defined objects from your source code. This form of
addressing is known as an indexical. Indexicals defined by packages are known as
package indexicals. You can specify the static objects that you want to address from
your source code with package indexicals. To create an indexical, it must be defined
in your instance definition file and then declared in your class definition file. To
define an indexical, you provide a symbolic name for the indexical and the static
object it references. Following is an example of how you define an indexical:

indexical iMilkyWay = (Galaxy milkyWay);

To declare the package indexical, you provide the same name you used in the
instance definition file and the class of the object the indexical refers to. Here is an
example of how you declare a package indexical:

indexical iMilkyWay: Galaxy;

After setting up the definition and declaration of an indexical, you can use the
symbolic name in your source files as if it a were a reference to a dynamically created
object.

Because indexicals are similar to global variables, you should use them sparingly, as
they have many of the same drawbacks as global variables. Magic Cap defines many
system indexicals that provide access to well-known system objects. See "Indexicals"
on page 22 for more information on indexicals.

Addressing Objects
This section discusses the ways you can address objects in a Magic Cap package.
Magic Cap provides various techniques for addressing objects both at build time in
instance definition files and at runtime in source code.
20 Package Development Guide Icras, Inc. Confidential

Addressing Objects Chapter 2 Object Runtime
Addressing Objects at Build Time
Objects defined in instance definition files often refer to other objects. Magic Cap
provides two ways for objects to refer to others at build time in instance definition
files: instance tags and indexicals.

Package objects in an instance definition file can address other objects directly by
using instance tags, as shown in "Creating Objects at Build Time" on page 16. This
form of address only works for statically created objects in the same package. The
instance definition file’s syntax for this form of reference consists of placing the
referenced objects’ instance definition in parentheses when defining a field, like this:

// start of instance definition here
 firstSong: (Song 239); // another static object
// rest of instance definition here

Package objects in an instance definition file can refer to well-known objects in the
system or the package itself by using indexicals. You can have your package address
an indexical by simply writing the indexical’s symbolic name as the field’s value, like
this:

// start of instance definition here
 favoriteSound: iNewYearSong; // indexical reference
 // to system object
// rest of instance definition here

Symbols for system indexicals, which are defined automatically when you build your
package, always start with the letter i , as with the example iNewYearSong shown
above. You should use names starting with ip as symbols for your package indexicals.
The addition of p helps avoid potential name conflicts with system indexicals.

Addressing Objects at Runtime
Magic Cap provides various ways for you to address objects from your package’s
source code by using various kinds of component numbers. The kinds of
component numbers include indexicals, references, class numbers, intrinsic
numbers, class operation numbers, and operation numbers.

References
A reference is used to address any object in memory. The object can live in RAM,
ROM, or on a storage card. A reference that addresses an object in ROM is called a
ROM reference. A reference that addresses an object in RAM is called a RAM
reference.

When you create a new object by calling one of the New or Copy operations, the
operation will return a reference to the new object.

The object runtime defines a special reference that represents the absence of an
object. This reference is defined by the symbol nilObject .
Icras, Inc. Confidential Package Development Guide 21

Chapter 2 Object Runtime Addressing Objects
Indexicals
Indexicals provide a way to address well-known objects in the system, your package,
and other packages. You can address indexicals defined by Magic Cap itself, or you
can use indexicals to address important objects defined by other packages.

Indexicals are an indirect form of a reference. When you use an indexical, the object
runtime maps the indexical to the appropriate reference, then converts the reference
to a pointer to access the object.

Because indexicals use an extra level of indirection, they are somewhat less efficient
than direct references, although this inefficiency isn’t significant for most uses. If you
use an indexical repeatedly, as in a tight loop, you can improve performance by using
a direct reference instead of the indexical. The object runtime provides the
DirectID operation, which converts an indexical to a direct reference. You can then
use the direct reference for faster access to the object.

DirectID always returns the most efficient, most direct reference for an object, and
it’s safe to call on all kinds of references. If the reference can’t be made more direct,
DirectID simply returns the given reference unchanged. This happens, for example,
if you call DirectID on a reference that is already a direct reference.

You should always call DirectID before comparing two references, except in the
rare case when you can guarantee that both references are not indexicals. You don’t
ever have to call DirectID on the responder inside its own operation. The object
runtime ensures that the responder is a direct reference inside its operations.

Magic Cap defines hundreds of system indexicals for addressing objects that include
images, songs, text styles, windows, gadgets, and virtually all interesting system
objects. Magic Cap defines symbolic names for most of these objects so that you can
use indexicals to address them from your instance definition files and source code.

In addition to indexicals that address unchanging objects, you can use indexicals
with values that change dynamically depending on the state of Magic Cap. These
current indexicals let you address such dynamic objects as the current user, the
scene that is visible on the screen, or the user’s default stationery for new electronic
mail messages.

If you want to capture the value of a current indexical, you can call DirectID on the
indexical. DirectID will return a reference to the object that represents the current
value of the indexical at the time you make the call.

You can find a complete list of system indexicals, including current indexicals, in the
file Indexicals.cdef.

In addition to system indexicals, you can define package indexicals. Package
indexicals are useful in two ways. First, you can define objects as indexicals in
instance definition files, then address them from your source code. Second, objects
that you define as package indexicals can be easily addressed by other packages.
22 Package Development Guide Icras, Inc. Confidential

Addressing Objects Chapter 2 Object Runtime
Using Indexicals
Indexicals are primarily used to address well-known system objects and objects in
other packages. You can use indexicals in all the ways you use other references.
Indexicals are most commonly used as values in objects’ fields and as parameters to
operation calls.

Magic Cap uses system indexicals to define a set of prototypes, example objects that
you can copy and use. These prototypes are blank or empty versions of objects that
are useful in your packages. Because these prototype objects are often fairly complex,
copying one by using an indexical provides a quick way to create a whole set of
objects that work together.

For example, the indexical iPrototypeNameCard represents a new name card for a
person and all its associated objects. You can call one of the Copy operations on this
indexical to create a new name card for a person. The new card comes complete with
labels for home and work phones, home and work addresses, and work fax. The
name on the card is new person, and the image is the standard image for a person.
Note that all these items on the new card are the same ones that appear when the
user creates a new name card with the new button in the Name card file. Also, note
that by simply copying the prototype via its indexical, you’ve created a complex set
of objects that represent a name card, including more than 10 different interrelated
objects.

You can use package indexicals to create prototypes for objects that you use often in
your packages. This technique is most effective for complex objects that refer to
many other objects. You shouldn’t use prototypes for very simple objects. Instead,
just use one of the New operations to create the objects, then fill in the appropriate
fields.

When you use an indexical, you can’t assume that you know the type of the object
that the indexical addresses. Any subclass of the expected type might be substituted
instead. For example, if you use an indexical that refers to a window, the actual object
addressed might be an instance of a subclass of class Window. In general, you should
never assume the class of any object. Instead, you can check to see whether an object
implements the interface of a given class. See "Guide to Magic Cap Development
Tools" for more information about inheritance.

When you create your own package indexicals, remember that indexicals provide a
level of indirection that you should consider when choosing what to name them. Try
to choose names for your indexicals that refer to high-level architectural concepts,
rather than specific implementation details.

Class Numbers
Class numbers are component numbers that provides a way to refer to classes
directly. Some operations are invoked by passing a class number instead of a
responder of that class. These operations are called class operations.

The object runtime defines a special class number that represents the absence of an
class. This number is defined by the symbol nilClass .
Icras, Inc. Confidential Package Development Guide 23

Chapter 2 Object Runtime Addressing Objects
Operations
Every class defines interfaces to its actions called operations. You can call these
operations to perform actions on the class’s objects. Some operations perform
actions that do not affect a particular instance of the class. These are called class
operations. The operations of a class are defined by declaring them in the class’s
definition in a class definition file. Operations are identified at runtime by
dynamically assigned operation numbers. The object runtime defines a special
operation number that represents the absence of an operation. This number is
defined by the symbol nilOperation .

Many objects contain values that can be set and changed. For example, every
viewable object includes a Boolean value that indicates whether it can be moved by
the user and a pair of 32-bit values that indicate the object’s height and width. You
can specify values like this as attributes of the object in the class’s definition.

Taken together, operations and attributes form the public interface of a class. Fields,
which are often used to implement attributes, are not part of a class’s public
interface. They should be considered private and should only be used when defining
objects in instance definition files and within code of operations of the class.

Defining Operations and Attributes
Operations for each class are defined in class definition files. In the class’s definition,
operations are defined with the keyword operation , as in the following examples:

 operation StartSongs();
 operation DrawWithContents(canvas: Canvas; clip: Path);
 operation DirectID(): Object;

Each operation definition begins with the keyword operation, followed by the name
of the operation, and the operation’s parameters in parentheses. If the operation
returns a value, the definition ends with a colon and the type of the return value. All
operation definitions end with a semicolon, like all lines in an class compiler input
file. For historical reasons, the syntax for defining operations and parameters in class
definitions is similar to that of Pascal.

You can define class operations much like you define normal operations, except that
you use the keyword class operation .

You can define an attribute if you want to specify a value that can be read and set, as
in the following examples:

 attribute Last: Object;
 attribute CanExtendBottom: Boolean;
 attribute ContentHeight: Micron;

When you define an attribute in a class definition, you implicitly define two
operations, one to get the value and another to set it, called a getter and a setter.
Attributes simplify class definitions by grouping the getter and setter operations.
Because each attribute defines two operations, attributes are part of the class’s
interface. Attribute definitions are simpler than operation definitions because
attributes have no parameters.
24 Package Development Guide Icras, Inc. Confidential

Addressing Objects Chapter 2 Object Runtime
The getter has the same name as the attribute. The setter prefixes "Set" to the
attribute name. The getter takes no parameters other than the responder, and returns
the value of the requested attribute. The setter takes the new value as a parameter,
and returns no value.

The getter and setter operations created implicitly by the last attribute definition
shown above work as if they were defined as follows:

 operation ContentHeight(): Micron; // getter
 operation SetContentHeight(newValue: Micron); // setter

The class compiler defines various keywords that can be used optionally to modify
operation and attribute definitions. See "Guide to Magic Cap Development Tools" for
complete information on the syntax of operation definitions.

Implementing Attributes
Attributes provide an interface to their getter and setter operations, but you must
provide an implementation for these operations. Because attributes often use fields
to hold their values, the class compiler lets you define automatic field accessors as
a way to connect attributes to fields automatically, without having to write any getter
or setter methods yourself.

An automatic field accessor that reads the value of a field is called an automatic
getter, and an automatic field accessor that sets the value is called an automatic setter.
When you use automatic field accessors, you don’t have to write any code to
implement the attribute’s operations -þthe code is created for you.

If you don’t use automatic field accessors to implement the operations defined by an
attribute, you must one of the other techniques for implementing operations: C
functions or scripted functions.

See this chapter’s Automatic Field Accessors section for complete information about
creating automatic field accessors, including syntax for class definition files.

Calling Operations
You ask a class to perform an action on one of its objects by calling an operation
defined by the class or one of its superclasses. You call an operation by making an
ordinary function call with the same name as the operation, passing the object’s
reference as the first parameter. For example, every viewable object includes a sound,
and you can play the sound by calling the viewable’s PlaySound operation.
Assuming that viewObject is defined as reference, you can call its PlaySound
operation as follows:

 PlaySound(viewObject);

PlaySound is the name of the operation as defined by class Viewable . In this
example, viewObject is the responder.

You call class operations in a similar fashion. Instead of passing a reference as the first
parameter, you would pass the symbolic label that represents the class number. This
label will always be the class name followed by an underscore:

 RunNext(Scheduler_);
Icras, Inc. Confidential Package Development Guide 25

Chapter 2 Object Runtime Addressing Objects
RunNext is the name of the class operation as defined by class Scheduler . You can
pass the class number for any class that is a subclass of the class that defines the class
operation.

Dispatching
When an operation is called, the object runtime performs an action in response. The
object runtime determines what action to take by examining the class of the
responder through a process called dispatching, handled by a part of the object
runtime called the dispatcher. The dispatcher first checks to see if the responder’s
class implements the operation. If so, the dispatcher executes that class’s
implementation of the operation.

If the responder’s class doesn’t implement the operation, the dispatcher searches
through the class’s ancestors, beginning with the class’s immediate superclass. When
the dispatcher finds a class in the class’s inheritance hierarchy that implements the
operation, the object runtime executes that class’s implementation. If no class
implements the operation, the object runtime generates a method not found error,
which activates the debugger in debug versions of Magic Cap, or continues silently
in non-debug versions. You can use the Implements operation before calling an
operation to determine if an object implements a particular operation.

You can see the order that the dispatcher will use to search for a class’s operation by
using Magic Cap’s inspector to look at an object of the class. The inspector displays
the object’s inherited classes in reverse of the order that the dispatcher searches.

Intrinsics
Classes can define operations that don’t require an instance of the class in order to
execute. These operations are called simple intrinsics. Simple intrinsics are faster to
invoke than other operations but can’t be overridden by subclasses. Utility
operations and other global functions are often implemented as simple intrinsics.
Simple intrinsics do not take a responder as a parameter.

For example, operation CalcCRC32 , which calculates a checksum value, is
implemented as a simple intrinsic. When you call CalcCRC32 , you don’t pass a
responder as a parameter.

Like operations, intrinsics are identified at runtime by dynamically assigned intrinsic
numbers. The object runtime also defines a special intrinsic number that represents
the absence of an intrinsic. This number is defined by the symbol nilIntrinsic .

Implementing Operations
When you create a class and operations, you can choose from among several ways to
implement each operation that your class defines:

• Write a function in C.
• Create automatic functions for getting and setting attribute values.
• Write a script using Magic Script.

You use the same syntax to call an operation no matter which of these techniques is
used to implement an operation. In fact, the choice for the operation’s
implementation isn’t readily visible to callers.
26 Package Development Guide Icras, Inc. Confidential

Addressing Objects Chapter 2 Object Runtime
The following sections discuss each of these techniques for implementing an
operation.

C Functions
By far the most common way to implement an operation is to write a function in
your C source. To do this, you define a C function that has as its name the class name
and operation name connected with an underscore. For example, a C function
named TestClass_DoSomething would provide the code for the DoSomething
operation of class TestClass . When you use this technique to implement an
operation, the code in your C function is called a method.

Following is an example of the PlaySound operation, shown above, implemented
with a C function:

Method void
Viewable_PlaySound(Reference self)
{
 Reference sound = Sound(self);

 if (sound != nilObject)
 Play(sound);
}

To use a C function to define a method, start the function declaration with the
identifier Method , a macro defined by the development environment, followed by
the rest of the normal function declaration. The function name should be the class
name and the operation name, as specified in the class definition file, connected with
an underscore.

Remember that when you call an operation, you always pass the responder as the first
parameter:

 PlaySound(viewObject);

However, the responder is never shown when the method’s operation is defined in
the class definition file. The reason why the responder isn’t shown in the definition
files is simply to make the definitions easier to read and to type. The responder is
always implied in the class definition file and must be used when you call an
operation or declare a C function as a method.

For example, the operation PlaySound shown above would be defined as follows in
a class definition file:

 operation PlaySound();

Note that there’s no mention of the responder in the definition, even though you
must always pass it, as shown in the example call. For comparison, here’s how the
same call would appear in Object Pascal, a popular object-oriented language:

 viewObject.PlaySound; (* won’t work in Magic Cap *)

In C++, the call would look like this:

 viewObject.PlaySound() // won’t work in Magic Cap

The Magic Cap version in C is repeated here for comparison:

 PlaySound(viewObject); // works in Magic Cap
Icras, Inc. Confidential Package Development Guide 27

Chapter 2 Object Runtime Accessing Object Data
Note that Object Pascal and C++ don’t require you to pass the responder explicitly.
Instead, it is passed implicitly in every operation call. When writing Magic Cap
programs, you must pass the responder explicitly.

This difference between the appearance of operations in C and class definition files
can cause build-time errors that may be confusing. Because this point is so
important, it’s repeated and summarized in the following warning.

WARNING! When an operation is declared or called in C source, the first
parameter must be the responder, the object whose operation is
being called. When an operation is defined in a class definition
file, the responder is implied but is never shown.

For example, this operation definition:

 operation PlaySound(); // class compiler syntax
 // the responder is implied, not shown

matches an operation declared in C like this:

 Method void
 Viewable_PlaySound(Reference self) // C syntax
 // the responder is explicitly shown

Here’s how you would call the same operation in C:

 PlaySound(viewObject); // C syntax
 // the responder must be included

When you’re writing an implementation of an operation, you can use the first
parameter to refer to the responder. By convention, this parameter is usually named
self , but there’s no requirement that it have that name.

Scripts
You can use a script written in Magic Script to provide the implementation for an
operation. You can provide a Magic Script version of any operation. See "Guide to
Magic Cap Development Tools" for more information on using scripts for operations.

Accessing Object Data
Every object in memory consists of a series of fields containing values. Objects
include the fields defined by their classes and superclasses. The fields of objects are
private. You should avoid reading or changing the field, except from operations
defined by the field’s class. There are two fundamental ways to read from or write to
the fields of an object:

• Call an operation that reads from or writes to the field.
• Call an accessor operation that gives you direct access to the field.

Whenever possible, you should work with fields by calling operations that access the
field for you. In cases where that isn’t possible, or when you must work with the
fields of your own objects, you’ll use accessor operations defined by the object
runtime to read and change fields.
28 Package Development Guide Icras, Inc. Confidential

Accessing Object Data Chapter 2 Object Runtime
A class’s fields are defined along with the rest of a class in a class definition file. The
definition for a class includes the field keyword, the name of the field, its type, and
optional modifiers.

Each object’s fields are organized into groups, with each group defined by one of the
classes in the object’s class ancestry. Not every class defines fields. For example,
Magic Cap defines class StatusAnnouncement , which inherits from class
Announcement , which in turn inherits from class Object . Every object of class
StatusAnnouncement includes the following fields:

• fields inherited from class Object:
(none)

• fields inherited from class Announcement:
bootList, flags, info, stamp, sound, publicAddress

• fields defined by class StatusAnnouncement:
currentScope, currentValue, serverToAbort

Every object can have one variable-length area, called the object’s extra data. The
extra data can be any information that can change its length at runtime. For example,
Magic Cap defines many classes that include lists of references. These lists are usually
kept in the objects’ extra data, because the size of the extra data can vary as the list
adds or removes members.

Extra data can be structured or unstructured. When extra data is structured, it can
be treated as an array, with each entry being the same size and holding data of the
same type. Many of Magic Cap’s list classes, such as ObjectList , IntegerList ,
ClassNumberList , and ShortIntegerList , are implemented using structured
extra data. When extra data is structured, the first word of an object’s extra data space
is used to describe the structure of the data. This allows Magic Cap to interpret the
structured extra data without the need to call any operations defined by the class.
Object references must be stored in structured extra data.

When extra data is unstructured, entries can be of variable size, and Magic Cap must
rely on operations provided by the class to be able to interpret the extra data content
of such classes. Card objects store the data in text fields on their forms as
unstructured extra data.

Although every object has only one extra data area, it can be shared among classes in
a class hierarchy as long as the first class in a hierarchy that declares it will use the
extra data area also defines that it can share the extra data area with subclasses.

Objects can have both structured and unstructured extra data, but the structured
data always comes first. If a class stores structured data in its objects, a subclass can
also store structured data in the object as long as the subclass’ structured data is the
same size as the data stored by parent class. Additionally, if a class stores unstructured
extra data in objects, no classes can inherit from that class and store structured extra
data. For example, the Magic Cap class Viewable uses structured extra data to
maintain a subview list in each viewable object. Each structured extra data entry is a
reference to a viewable object. Class Card , which inherits from class Viewable , also
uses structured extra data to store text style information for entered text. Each
structured data entry is a reference to a text style object. Class Card also stores the
Icras, Inc. Confidential Package Development Guide 29

Chapter 2 Object Runtime Accessing Object Data
data from form items as unstructured data after the structured text style information.
Subclasses of Card can store additional unstructured extra data if they wish to, but
are not allowed to store any structured extra data.

For more information about how to use the extra data area of an object, see the
section on the class definition syntax in the Object Tools chapter of "Guide to Magic
Cap Development Tools".

Automatic Field Accessors
You should avoid reading and writing fields directly, instead using operations
wherever possible. To help enforce this behavior, you can ask the class compiler to
create operations automatically that read and write a field associated with an
attribute: automatic field accessors. You can define these operations for a field by
using the following syntax in your class definition file:

// start of class definition here
field justAboutGlad: Boolean, getter, setter;
// other fields defined here
attribute JustAboutGlad: Boolean;
// rest of class definition here

The attribute declaration automatically specifies two operations. If you want to keep
the values of this attribute in a field, you can create automatic field accessors (an
automatic getter and setter), for the attribute. The automatic getter simply returns
the value of the field. The automatic setter just sets the field to a value that you pass
when you call it.

To create automatic field accessors, use the same name for the field and the attribute,
capitalizing the attribute name.

You can use this technique to create an automatic setter and getter for any attribute
and associated field that contain an object, unsigned, signed, or boolean value. When
you create automatic field accessors, they can be overridden by subclasses just like
other kinds of operations, and the overridden versions can be C functions.

Because dealing with text is a common operation, automatic field accessors that get
and store text objects are handled specially. When you call an automatic getter to get
the text object stored in a field, an ephemeral copy of the text object created and the
reference to the copy is returned to you. When you pass a text object to an automatic
setter, a copy of the text object is made and stored in the field, leaving your original
text object untouched. This is done to avoid possible confusion about who owns the
text object. With this design, the code that calls an automatic text getter is
responsible for the returned text object while ownership of the original text object is
retained by the object that refers to it. Similarly, the code that calls an automatic text
setter is responsible for the text object passed to the setter while the object that stores
the reference to the text object is responsible for making a copy for its own use. See
"Ephemeral Objects" on page 15 for more information about ephemeral objects.

You should only create getters and setters for fields that must provide a public
interface. Most fields can safely be kept private, and so don’t need getters and setters.
You might want to create an interface for some fields that allows their values to be
read, but not changed. To do this, use only the getter keyword in the field’s
definition; only a getter operation will be created.
30 Package Development Guide Icras, Inc. Confidential

Accessing Object Data Chapter 2 Object Runtime
If the getter and setter routines you create will be returning and storing object
references, you should consider following the same strategy used by the automatic
text getter and automatic text setter to avoid possible confusion about object
ownership.

Accessors
If no operation is defined to access a field, you can use accessor operations to read
and write the field directly. The object runtime defines four families of accessor
operations:

• Single-field accessors that read or write a single field of an object.
• Whole-object accessors that read or write all the fields of an object at one time.
• Direct accessors that provide you with a pointer to the object’s storage in

memory, which you can then use to read from or write to the object.
• Extra-data accessors that let you read or write the object’s extra data.

Many of the accessor operations require that you pass a field number, a value that
identifies the field within its class. To help you pass field numbers to accessors, the
class compiler defines symbolic names for all fields at build time. The symbolic name
for a field number consists of its class name, followed by an underscore, followed by
the field name. The following are all examples of symbolic names for fields:

 Viewable_color
 Game_currentInning
 Form_image
 Shelf_shelfBorder
 Angel_timeOnHold

In addition to these field numbers, the class compiler also defines local field numbers
for all fields at build time. Local field numbers are used by accessors that always
operate on the responder’s fields. The symbolic name for a local field number
consists of just the field’s name, with no reference to its class, as follows:

 formItems // a field of class Form
 superview // a field of class Viewable
 activeDrawer // a field of class Drawer

Making Objects Usable and Storable
A ROM reference can be described in different formats depending on whether the
reference is located in a local variable, or is stored in an object’s field. A ROM
reference can only access the object it refers to when it is located in a variable. This
is known as the reference’s usable format. To make sure that the reference from a
field can be used to access the object, the object runtime defines the
MakeUsableReference operation of class Object . Because object fields can store
both RAM references and ROM references, you must make the reference stored in
the field usable with the MakeUsableReference operation before fore using it.

Similarly, class Object defines a MakeStorableReference operation to convert
reference before storing it into a field. Before storing an reference in a field, you must
make the reference storable with the MakeStorableReference operation.
Icras, Inc. Confidential Package Development Guide 31

Chapter 2 Object Runtime Accessing Object Data
Depending on the accessor you use, you may not have to call the conversion
operations MakeUsableReference or MakeStorableReference ; some accessors
call them for you automatically. Specifically, the single-field accessors call the
conversion operations for you automatically. When you use whole-object accessors,
you must call the conversion operations directly. When you use extra-data accessors
to read references in extra data, you must also call the conversion operations directly.

To modify a reference in a field you’ll typically follow this sequence:

1. Call an accessor to get access to an object.

2. If you didn’t use a single-field accessor, call MakeUsableReference on the
appropriate reference to convert it.

3. Use it however you want.

4. Call MakeStorableReference to convert the reference.

5. Store the reference in the field.

Using Accessors
The following sections describe the operations in each of the four families of
accessors and discuss when you might use them.

Single-Field Accessors
You can call a single-field accessor to read or set the value of any field that contains
a component number or a value of type Object, Unsigned, Signed, UnsignedShort,
SignedShort, or Boolean. To access a field of any other type, you must use whole-
object or direct accessors. See the appropriate sections below for details.

Call Field to get the value of a field from within a method of that object’s class.
Field takes two parameters: the responder, which you normally address in your C
source as self , and the local field number of the field that has its value read. Field
returns the value of the field as its function result.

Similarly, you can call SetField to set the value of a field of an object from within
a method of that object’s class. SetField takes the responder, which should be
self , the local field number, and the field’s new value as parameters.

Following are examples of Field and SetField :

corridorSize = Field(self, corridorSize);
Reference rightArrow = Field(self, rightArrow);
return ((Field(self, dwFlags) & kBunnyShowingMask) != 0);

Accessor name What it does

Field returns the value of an object’s field; used within a
method of that object’s class only

SetField sets the value of an object’s field; used within a method
of that object’s class only

FieldOf returns the value of a field of an object of any class

SetFieldOf sets the value of a field of an object of any class
32 Package Development Guide Icras, Inc. Confidential

Accessing Object Data Chapter 2 Object Runtime
SetField(self, mode, 0);
SetField(self, numDrawsLong, Field(self, numDrawsLong) + 1);

You can use Field and SetField only to work with fields of objects from within
the methods of that object’s class; that is, the first parameter must always be the
responder. For other objects, call FieldOf to get the field’s value and SetFieldOf
to set its value.

When you call Field or SetField , you can only read or set the fields that are
defined by the object’s class - not any of its superclasses. For example, if you call
Field with an object of class Box , you can only access fields defined by that class,
not by its superclasses, Viewable or HasBorder . For other objects, call FieldOf to
get the value of the object’s field and SetFieldOf to set the new value to the field.

FieldOf takes two parameters: the object that has its field read, and the field
number of the field. FieldOf returns the value of the field as its function result.
SetFieldOf takes three parameters: the object, the field number to be set, and the
new value.

These are examples of FieldOf and SetFieldOf :

return FieldOf(self, HasBorder_border);
userLevelList = FieldOf(iCommandWindow, CommandWindow_userLevelList);
SetFieldOf(self, NameBar_pageArrow, FieldOf(iNameBar,
NameBar_pageArrow));
SetFieldOf(self, Shelf_shelfBorder_h, newBorderSize);
SetFieldOf(iDesk, Scene_screen, officeScreen);

Note that Field and SetField always work on the responder and take a local field
number (just the field name), while FieldOf and SetFieldOf work on any object
and take a field number (the class name, an underscore, and the field name).

When you call FieldOf or SetFieldOf , you can only read or set the fields that are
defined by the class you specify- not any of its superclasses.

All single-field accessors automatically call MakeUsableReference or
MakeStorableReference if necessary. You shouldn’t call them yourself when you
use single-field accessors to work with fields.

When you change an object, the object may be shadowed, using up precious RAM
for the shadowed version. If you call SetField or SetFieldOf without changing
the value of the field, the object runtime doesn’t actually modify the object, so no
shadow object is created. Because of this, you can call SetField or SetFieldOf
without checking to see if the field will actually change. The object runtime will
avoid modifying or shadowing the object unnecessarily.

Field and FieldOf return will return typed values. If a field is defined to contain a
reference, a reference will be return. If a field is defined to contain a boolean value,
a boolean value is returned. You should use caution if you cast the return value to a
different type.
Icras, Inc. Confidential Package Development Guide 33

Chapter 2 Object Runtime Accessing Object Data
Whole-Object Accessors
You can use a whole-object accessor to read or set the values of any fields of an object.
Whole-object accessors provide a way to use fields of types other than those that
work with the single-object accessors; that is, types other than Object, Unsigned,
Signed, UnsignedShort, SignedShort, and Boolean. Whole-object accessors are also
efficient when you want to read or set more than one or two fields of an object.

Whole-object accessors work by reading or setting all the fields of an object at once.
To set one or more fields of an object, you’ll typically call an accessor to read all the
fields of an object, change the fields you want, then call another accessor to write the
changes back.

Call ReadFields to get the values of all the fields of an object from within a method
of that object’s class. ReadFields takes two parameters: the responder, which
should be self , and a pointer to storage for the field values.

Similarly, you can call WriteFields to set the values of all the fields of an object
from within a method of that object’s class. WriteFields takes the same two
parameters as ReadFields : the responder, which should be self , and a pointer to
the storage for the field values.

To help you create storage for the field values when calling ReadFields and
WriteFields , the class compiler defines a symbolic name for each class that
specifies a structure containing the class’s fields. The symbolic name for this
structure is the class name, followed by an underscore and the word fields. You can
use this symbolic name in your C source to allocate storage for the fields as follows:

 ClownStrike_Fields fields; // allocate a structure to hold the fields’
 // values

Once you’ve created a structure to store the fields, you can use the whole-object
accessors to work with the object. Assume that class ClownStrike is defined as
follows in a class definition file:

Define Class ClownStrike;
field strikeStart: Unsigned; // unsigned long - 32 bits
field strikeLevel: SignedByte; // field of unusual size - 8 bits
field onStrike: Boolean; // Boolean - 1 bit

End Class;

The following example shows how to change the value of field strikeLevel. Because
this field doesn’t occupy exactly 1, 16, or 32 bits, you can’t use the single-field
accessors described above. Instead, the example shows how to use whole-object
accessors to change the field.

Accessor name What it does

ReadFields returns the values of all the fields of an object; used
within a method of that object’s class only

WriteFields sets the values of all the fields of an object; used within a
method of that object’s class only

ReadFieldsOf returns the values of all the fields of an object of any
class

WriteFieldsOf sets the values of all the fields of an object of any class
34 Package Development Guide Icras, Inc. Confidential

Accessing Object Data Chapter 2 Object Runtime
 ReadFields(self, &fields); // read all fields
 fields.strikeLevel += 1; // increment 8-bit field
 WriteFields(self, &fields); // write fields back to object

The example first reads the values from the object into the storage that fields defines.
Then, the value of field strikeLevel is incremented in memory. Finally, the values of
the fields in memory are stored in the object.

When you call ReadFields or WriteFields , you can only read or set the fields that
are defined by the object’s class - not any of its superclasses. For example, if you call
ReadFields with an object of class Box, you can only access fields defined by that
class, not by its superclasses, Viewable or HasBorder .

You can use ReadFields and WriteFields only to work with objects from within
the methods of that object’s class; that is, the first parameter must always be the
responder. For other objects, call ReadFieldsOf to get the values of the object’s
fields and WriteFieldsOf to write the new values to the fields.

ReadFieldsOf takes three parameters: the object from which the fields are read, the
class number of the object’s class, and a pointer to storage for the field values.
WriteFieldsOf takes three the same three parameters: the object to which the fields
are written, the class number of the object’s class, and a pointer to storage for the
field values.

When you call ReadFieldsOf or WriteFieldsOf , you can only read or set the
fields that are defined by the class you specify- not any of its superclasses.

Unlike single-field accessors, whole-object accessors do not automatically call
MakeUsableReference or MakeStorableReference when necessary. You must
call them yourself if you’re reading or writing fields that contain references. See
"Making Objects Usable and Storable" on page 31 for more information.

When you change an object, the object may be shadowed, depending on its cluster.
If you call WriteFields or WriteFieldsOf without changing the value of a field,
the object runtime accesses the object anyway, and a shadow object is created, using
up precious RAM for the shadowed copy even though the object hasn’t changed.
Because of this, you should be careful to avoid calling WriteFields or
WriteFieldsOf if you haven’t actually changed a field.

Direct Accessors
For more efficient access to an object’s fields, you can use direct accessors to get a
pointer to the fields. You can then use that pointer to get direct access to the object’s
fields, which you can then read or change. Direct accessors are more efficient than
whole-object accessors because they don’t cause reading or writing of all the object’s
fields.

To read or change one or more fields of an object with direct accessors, you’ll
typically call an accessor to get a pointer to the object, read or change the fields you
want, then call another accessor to signify that you’re finished with the pointer.
There are two sets of direct accessor operations: one set that provides pointers that
can be used to read and change an object’s fields, and another set that provides
pointers that can only be used to read an object’s fields.
Icras, Inc. Confidential Package Development Guide 35

Chapter 2 Object Runtime Accessing Object Data
After you’ve called the accessor to begin working with the object’s fields, the object
is locked. It is temporarily prevented from being moved by the object runtime until
you finish the access. New memory allocations cannot occur while objects are
locked.

To avoid these allocation problems, you should never perform any action that
allocates new objects in memory while an object is locked. Many common actions,
including calling almost any operation, and changing field values, can cause memory
to be allocated. Because of this severe restriction, you should only use direct accessors
when absolutely necessary, such as when you must access an object’s extra data.
When you must use direct accessors, you should minimize the period during which
the object is accessed by doing as much work as possible before beginning the access
or after finishing the access.

Call BeginReadFields to get a pointer to the object’s fields when you only want to
read fields, not change them. BeginReadFields takes one parameter, which must
be the responder. BeginReadFields returns an untyped pointer that holds the
address of the object’s fields. This pointer can only be used to read the fields, not
change them. After you’re done reading the object’s fields, call EndReadFields to
finish the access.

Call BeginModifyFields to get a pointer to the object’s fields when you want to
read or change fields. BeginModifyFields takes one parameter, which must be the
responder. BeginModifyFields returns an untyped pointer that holds the address
of the object’s fields. This pointer can be used to read or change the fields. After
you’re done reading and changing the object’s fields, call EndModifyFields to
finish the access.

To help you create storage for the field values when calling BeginReadFields and
BeginModifyFields , the class compiler defines a symbolic name for each class that
specifies a structure containing the class’s fields. The symbolic name for this
structure is the class name, followed by an underscore and the word fields. You can
use this symbolic name in your C source to allocate storage for the fields as follows:

 BigShark_Fields fields; // allocate a structure to hold
 // the fields’ values

When you call BeginReadFields or BeginModifyFields , you can only read or
change the fields that are defined by the object’s class - not any of its superclasses.
For example, if you call BeginReadFields with an object of class Box, you can only

Accessor name What it does

BeginReadFields returns a read-only pointer to an object’s fields; used
within a method of that object’s class only

EndReadFields releases the object and ends the pointer’s access to the
object

BeginModifyFields returns a read-write pointer to an object’s fields; used
within a method of that object’s class only

EndModifyFields releases the object and ends the pointer’s access to the
object

BeginReadFieldsOf returns a read-only pointer to any object’s fields

BeginModifyFieldsOf returns a read-write pointer to any object’s fields
36 Package Development Guide Icras, Inc. Confidential

Accessing Object Data Chapter 2 Object Runtime
read fields defined by that class, not by its superclasses, Viewable or HasBorder .
Don’t assume that you can use a pointer provided by a direct accessor to get to the
fields defined by a superclass or to an object’s extra data - the object runtime may
store these fields and extra data separately in future versions of MagicþCap.

You can use BeginReadFields and BeginModifyFields only to access objects
from within the methods of that object’s class; that is, the first parameter should be
self . For other objects, call BeginReadFieldsOf or BeginModifyFieldsOf to
get pointers to the objects’ fields.

BeginReadFieldsOf takes two parameters: the object from which the fields are
read and the class number of the object’s class. BeginModifyFieldsOf takes the
same two parameters. Both operations return untyped pointers to the object that is
accessed.

When you access an object with direct accessors, you can only read or change the
fields that are defined by the class you specify- not any of its superclasses.

As with whole-object accessors, direct accessors do not automatically call
MakeUsableReference or MakeStorableReference . You must call them
yourself if you’re reading or writing fields that contain references. Remember not to
call MakeUsableReference and MakeStorableReference while an object is
locked. See "Making Objects Usable and Storable" on page 31 for more information.

When you change an object, the object may be shadowed, depending on its cluster.
If you use BeginModifyFields or BeginModifyFieldsOf without changing the
value of a field, the object runtime accesses the object anyway, and a shadow object
is created, using up precious RAM for the shadowed copy even though the object
hasn’t changed. Because of this, you should be sure to call BeginReadFields or
BeginReadFieldsOf if you’re only reading fields. Additionally, because memory is
allocated when an object is shadowed, you cannot nest calls to BeginModifyFields
or BeginModifyFieldsOf .

Extra-Data Accessors
Every object can have extra data, variable-length information that isn’t stored in its
fields. You can use extra-data accessors to get a pointer to the extra data. You can
then use that pointer to read or change the object’s extra data.

To read or change an object’s extra data, you’ll typically call an accessor to get a
pointer to the extra data, read or change it, then call another accessor to signify that
you’re finished with the pointer. There are two pairs of extra-data accessor
operations: one pair that provides pointers that can be used to read and change an
object’s extra data, and another pair that provides pointers that can only be used to
read an object’s extra data.

Accessor name What it does

BeginReadBytes returns a read-only pointer to an object’s extra data

EndReadBytes releases the object and ends the pointer’s access to the
object

BeginModifyBytes returns a read-write pointer to an object’s extra data
Icras, Inc. Confidential Package Development Guide 37

Chapter 2 Object Runtime Accessing Object Data
Call BeginReadBytes to get a pointer to the object’s extra data when you only want
to read extra data, not change it. BeginReadBytes takes one parameter, the object
which will have its extra data read. BeginReadBytes returns an untyped pointer
that holds the address of the object’s extra data. This pointer can only be used to read
the extra data, not change it. After you’re done reading the object’s extra data, call
EndReadBytes to finish the access.

Call BeginModifyBytes to get a pointer to the object’s extra data when you want
to read or change the extra data. BeginModifyBytes takes one parameter, the
object which will have its extra data read or changed. BeginModifyBytes returns
an untyped pointer that holds the address of the object’s extra data. This pointer can
be used to read or change the extra data. After you’re done reading and changing the
object’s extra data, call EndModifyBytes to finish the access.

After you’ve called the accessor to begin working with the object’s extra data, the
object is locked. It is temporarily prevented from being moved by the object runtime
until you finish the access. New memory allocations cannot occur while objects are
locked.

To avoid these allocation problems, you should never perform any action that
allocates new objects in memory while an object is accessed. Many common actions,
including calling almost any operations, sometimes or always cause memory to be
allocated. Because of this severe restriction, you should minimize the period during
which the object is accessed by doing as much work as possible before beginning the
access. The object runtime provides no other way to access extra data, so you’ll have
to be aware of these restrictions if your objects use extra data.

EndModifyBytes releases the object and ends the pointer’s access to the
object

Accessor name What it does
38 Package Development Guide Icras, Inc. Confidential

3
Software Packages

This chapter describes software packages, collections of objects that perform
functions and provide features for Magic Cap users. Software packages are often
simply called packages. Before reading this chapter, you should be familiar with the
fundamental concepts of Magic Cap’s object runtime.

About Software Packages
Magic Cap includes several major sets of features, such as the datebook, notebook
and name card file, that provide services usually handled by application programs on
conventional computer systems. In addition to these built-in features, Magic Cap
provides a platform for additional features to be added via software packages.
Whenever you deliver any additional features to Magic Cap users, you’ll provide a
software package.
Icras, Inc. Confidential Package Development Guide 39

Chapter 3 Software Packages About Software Packages
Figure 1 Software packages are represented by storage boxes on storeroom
shelves

In addition to collecting the objects that implement your features, software packages
also provide an interface in the storeroom for users to install and remove your
objects.

Software packages can install their objects in many different places in Magic Cap.
You can have your package install its objects wherever appropriate. Some typical
locations for package objects are as follows:

• Packages that are generally useful or are similar to the items on the desk, such as
calculators or specialized notebooks, often go in the desk accessories drawer.

• Specialized packages or sets of packages can add rooms in the hallway.
• Packages that connect to remote services appear as buildings downtown.
• Games go in the game room in the hallway.
• Sets of stamps, sounds, coupons, and other useful objects go in the Magic Hat.
• Custom pieces of stationery for telecards are installed in the stationery drawer.
• Books that are generally useful can go in the library in the hallway.
• General configuration and hardware setup features go in the control panel.

The list above shows suggested installation points for some kinds of objects. Many
more installation points are available. Each package can designate where to install its
objects. In many cases, users can customize the location of package objects by
moving viewables in Magic Cap. For example, a user who wants quicker access to
the calculator can move it out of the desk accessories drawer and place it directly on
the desk. Similarly, a user can get faster access to a favorite game by copying the
game’s icon in the game room and placing the copy in a more convenient location.

Packages appear to users as storage boxes on shelves in the storeroom. Users can pack
up, unpack, copy, send, throw away, and otherwise work with packages by
manipulating their storage boxes. The user can look inside the storage box in the
storeroom to learn more about a package. You can customize the scene that appears
when the user looks inside the storage box for your package.
40 Package Development Guide Icras, Inc. Confidential

Kinds of Packages Chapter 3 Software Packages
Your software packages install their objects when the user unpacks them. Many types
of objects already know where they should be installed. For example, doors know to
install themselves in the hallway. However, you can specify in your package the
destination for objects you install. When your package is packed up or removed,
Magic Cap removes your package’s objects from their installation points.

When the communicator encounters technical difficulties, the contents of transient
RAM aren’t maintained, so your package must be designed to handle the sudden loss
of transient objects. Magic Cap provides various operations that provide notification
when the communicator resets so that you can allocate buffers, restart servers, and
rebuild other transient objects.

Magic Cap defines an extensive set of interpackage operability features that allow
users to exchange objects between packages where appropriate. Using these features,
your package can use objects and classes defined by other packages. Your package can
use these features to provide other packages with access to its own objects.

Kinds of Packages
A package’s contents can range from a small set to a large, complex collection,
providing users with a single stamp or an entire application. Every package includes
exactly one object that is a member of class SoftwarePackageContents .

Software packages can be categorized according to how they appear to users,
although there are no technical differences in creating and building the various kinds
of packages. Using this categorization, there are three kinds of packages:
applications, feature collections, and object collections.

Applications are packages that perform the functions of traditional software
applications. Examples of applications include packages for e-mail clients,
spreadsheets, and games. Applications generally provide their own scenes and usually
appear to users as a door in the hallway or a building downtown, or in the desk
drawer or the game room.

Feature collections provide tools, commands, or other functions that are available
throughout Magic Cap or in particular places. For example, a feature collection
package might provide a new set of drawing tools for the tool holder, a spell checker
button for the Magic Lamp, a directory for the storeroom that lists all installed
packages, a group of coupons that align viewables, or a handwriting recognizer pad
that appears as a type of keyboard. Feature collections generally don’t provide their
own scenes, but instead appear inside other viewables.

Object collections install items that users can add to messages, name cards, and other
objects they create. Example of these packages include collections of stamps, sets of
songs, a group of datebook appointments, coupons for fonts or colors, or new
stationery types for telecards. Object collections are distinguished from feature
collections in that object collections add mostly content, not functions, and contain
little or no code, while feature collections mainly add functions, not content, and can
contain significant amounts of code.
Icras, Inc. Confidential Package Development Guide 41

Chapter 3 Software Packages Packages and Storage Boxes
Note that Magic Cap doesn’t distinguish among these kinds of packages. They are
all created in the same way, and they all contain a single object that is a member of
class SoftwarePackageContents . The categories exist only to help users and
developers understand what packages can do. Applications, feature collections, and
object collections are all built by developers and manipulated by users in the same
way. Some packages contain aspects of more than one of these types, while other
packages defy categorization entirely.

Packages and Storage Boxes
Users occasionally need direct control over packages for such important but rare
activities as installing and removing them. Users see packages as storage boxes on
shelves in the storeroom. They appear in one of two states, as shown in the following
figure:

At the left is a storage box for a package that is unpacked. An unpacked package has
its objects installed and ready to use. The storage box on the right represents a
package that is packed up. All of its objects have been removed from their places in
Magic Cap, including any door in the hallway or building downtown, and none of
its features can be used until the user unpacks it (although its objects still occupy
memory). The only vestige of a packed-up package that is visible to users is its storage
box, which remains in the storeroom.

Users can permanently remove a package by sliding it to the trash and emptying the
trash. Most Magic Cap implementations include some packages in ROM. These
packages can’t be packed up or removed.
42 Package Development Guide Icras, Inc. Confidential

Packages and Storage Boxes Chapter 3 Software Packages
When the user touches a package in the storeroom, it opens to fill the screen with a
package storeroom scene. The package storeroom scene displays information about
the package and provides a user interface for other housekeeping functions.

Figure 2 Package storeroom scene

In the package storeroom scene above, the name and version number of the package
are displayed along with an image (in this case, a roast turkey). The scene also shows
the name of the package’s author and publisher, along with their associated images.

You specify all this information in your instance definition file when you create your
package.

The right side of the scene includes five buttons used for various actions. The top
button, pack up, packs the package and removes its objects from their places in Magic
Cap. When the package is packed up, the top button changes its name and action to
unpack. Touching the second button, copy, allows the user to make a copy of the
package. Touching the go to button takes the user to the package.

The fourth button, credits, goes to a scene that gives more information about who
made the package. Touching respond creates a new message card from stationery
provided by the package. This card can be used for registering the software,
providing comments, or any other purpose.

Magic Cap provides these buttons automatically. You don’t have to specify them in
your packages. The first two buttons, pack/unpack and copy, appears for every
package. The other three buttons are optional and appear only if your package
provides the appropriate objects. Otherwise, the buttons are disabled and are not
drawn.

To give your package a go to button, specify the main entrance into your package in
the startupItem field of your SoftwarePackageContents object. If your package
has a custom credits scene, refer to it in the creditsScene field of the
SoftwarePackageContents object. To enable the respond button, include an
object of class Stationery in your package and set the SoftwarePackageContent
object’s responseCardStationery field to refer to it. You should also include a telecard,
Icras, Inc. Confidential Package Development Guide 43

Chapter 3 Software Packages How Packages Install Objects
which the stationary object refers to. When the user touches respond, Magic Cap will
create a new message card from your stationery and take the user to the message
scene.

When the user packs or unpacks the package, Magic Cap displays a public address
announcement describing the action that just took place. Magic Cap supplies simple
default announcements for these actions. If you want to provide custom
announcements when the user packs, create a subclass of
SoftwarePackageContents and override the PackMessage attribute. This
attribute should return a text object containing the message you want displayed. To
provide a custom announcement when the user unpacks, override the
UnpackMessage attribute of class SoftwarePackageContents .

Every package creates new objects as it is used. In fact, just installing a package causes
some new package objects to be created. Packages in RAM and in ROM cards store
their changes in RAM by default, while packages on RAM storage cards keep their
changes on the same card by default. The value given in the package storeroom scene
as Size of changes indicates how much memory is occupied by changes to the package
persistent cluster.

Magic Cap installs a reset package button in the Magic Lamp for every package
storeroom scene. When the user touches reset package, Magic Cap throws away any
changes to the package by emptying its package changes and package shadow
clusters. This button and its function are provided automatically by Magic Cap. You
don’t have to add anything to your package to support it.

Most of Magic Cap’s major built-in features, including the datebook, notebook,
name card file, Internet mail client, and phone, are called built-in packages because
they are true packages represented by storage boxes on the Built-in packages shelf in
the storeroom.

For information on what happens to packages as the user manipulates package
storage boxes, see "Package States" on page 47.

How Packages Install Objects
When the user unpacks a package, some of the objects it contains are placed in
particular scenes, windows, and other Magic Cap objects. These are the package’s
installed objects, and they are placed in receivers. After the objects are installed, they
become available to the user, implementing the features of the package. When the
package is packed up, the objects it installed are removed from their receivers and are
no longer available to the user.

The Installation List
Packages specify each object to be installed and each receiver in an installation list.
The package content objects’s installationList field refers to a the list of object pairs.
The second object in each pair refers to the object to be installed, and the first object
refers to the object that will get it. Magic Cap recognizes certain types of receive-
install pairs and takes appropriate action to install the specified object. For some
receive-install pairs, Magic Cap adds the specified object to its receiver. For example,
44 Package Development Guide Icras, Inc. Confidential

How Packages Install Objects Chapter 3 Software Packages
if the receiver is an object list, Magic Cap adds the installed object as a new entry in
the object list. If the installed object is a task and the receiver is the datebook, the
task is added to the datebook’s collection.

For other receive-install pairs, Magic Cap takes special action to install the given
object. For example, you can specify the hallway and a scene as an receive-install pair.
When your package is unpacked and Magic Cap finds a hallway-scene pair, it installs
a door in the hallway that takes the user to the installed scene.

The Installation Queue
Magic Cap is modular in nature. This modularity allows manufacturers to choose
which Magic Cap user features to include in a product. For example, Magic Cap
running on a communicator might have the desk scene, the hallway, and downtown,
while a cellular phone might run another version of Magic Cap that only has the desk
scene.

This modularity can be problematical for software packages that try to install objects
into a receiver that does not exist on a particular version of Magic Cap. To solve this
problem, many types of objects in Magic Cap inherently know where to install
themselves by the specification of a default receiver. For example, the default
receiver for doors is the hallway, the default receiver for buildings is downtown, and
the datebook is the default receiver for tasks. In case the default receiver does not
exist on a particular version of Magic Cap, can also specify a fallback location. For
example, entrances will use in the desk accessories drawer in the desk scene as a
receiver if their preferred receiver is not present. Objects that know provide default
receivers inherit from the class CanInstallSelf .

Magic Cap does not guarantee the order in which packages are unpacked and their
objects are installed. Since Magic Cap modules are also packages, it is possible that
Magic Cap might try to install a package’s objects before the module that package
relies on has been installed into Magic Cap. To guarantee that all available modules
have been set up before other package objects are installed, packages will commonly
specify the installation queue as the receiver for their install objects. The installation
queue is specified with the indexical iInstallationQueue . Objects that are
installed into the installation queue have their installation deferred until all Magic
Cap module packages have completed their installations.

All objects installed in the installation queue must inherit from class
CanInstallSelf . Objects that provide default receivers for themselves can be
directly specified in the installation list with iInstallationQueue as the
corresponding receiver. Objects that do not specify a default receiver need to be
wrapped inside an install specifier which is then used as the install object. Install
specifiers inherit from class InstallSpecifier . Install specifiers describe the
object to be installed, the desired receiver for the object, and a fallback object to
install in case the module which provides the preferred receiver is not installed. This
allows install specifiers to provide nested fallback cases so that alternative receivers
can be tried until one is found.

Here is an example of a package installation list:

instance ObjectList installationList;
 entry: iInstallationQueue;
Icras, Inc. Confidential Package Development Guide 45

Chapter 3 Software Packages How Packages Install Objects
 entry: (Scene myPackageScene);
 entry: iHallway;
 entry: (Scene myPackageScene);
 entry: iInstallationQueue;
 entry: (InstallSpecifier cardInstaller);
 entry: iContactsMasterList;
 entry: (FullContact myContactInformation);
end instance;

instance InstallSpecifier cardInstaller;
 install: (Card myInformationCard);
 receiver: iMainFolderTray;
 fallback: (InstallSpecifier alternateCardInstaller);
end instance;

instance InstallSpecifier alternateCardInstaller;
 install: (Card myInformationCard);
 receiver: iNotebook;
 fallback: nilObject;
end instance;

The first receive-install pair installs a scene into the installation queue. After all
Magic Cap modules have been unpacked, Magic Cap will try to install the scene by
installing a door in the hallway that leads to this scene. If the hallway was not present
in any of the modules, an alternate entrance that leads to the scene will be installed
in the desk accessories drawer. The second receive-install pair will also install a door
in the hallway. However, because the scene is installed directly into the hallway in
this second example, no fallback installation can be performed if the hallway was not
installed. In this case, the installation fails and the scene is not installed.

The third receive-install pair shows the use of an install specifier to install a card. The
first install specifier tries to install a card into the mail folder tray in the file cabinet.
If the file cabinet was not installed, the alternate install specifier is invoked. This
second install specifier then tries to install the card into the notebook. If the
notebook is also not present, the installation fails and the card is not installed.

The last receive-install pair installs a contact object into the list that maintains a
user’s contact information. The contact can be installed directly into
iContactsMasterList because this list will be present in all Magic Cap versions.
An alternative way of installing the contact object would be to create an install
specifier that installed the contact into iContactsMasterList , and install the
specifier into the installation queue.

For more information on installing objects, see "Packing and Unpacking" on page
47.

Note: Magic Cap defines a separate mechanism, known as scene additions, for
installing items that are only available when a particular scene in your package is
current. You can use scene additions to install the following kinds of items that
appear only when a particular package scene is current: commands and rules in the
Magic Lamp, tools in the tools holder, and stamps in the stamper. For more
information, see the Scenes chapter of this book.
46 Package Development Guide Icras, Inc. Confidential

Package States Chapter 3 Software Packages
Package States
Magic Cap packages go through various state transitions as users work with them,
such as the transition from being packed up to being unpacked, or the drastic
transition that occurs when the user throws the package away and empties the trash.
Some transitions occur very rarely, such as the one that takes place when the user
copies a package from a storage card to main memory, or the emergency transition
that happens when Magic Cap encounters technical difficulties and is forced to reset.
Others, like the transition that happens when the communicator shuts off, can
happen many times a day. This section describes what happens to your packages
when these transitions occur and how you can react appropriately to each situation.

Loading Packages
Magic Cap users can add new packages and remove existing ones. Packages can be
stored in various places in memory, as follows:

• in the communicator’s RAM
• in the communicator’s ROM
• in RAM on a storage card in a slot

A package stored in main memory or on a storage card is said to be present in the
communicator. As soon as Magic Cap detects the presence of a new package, it loads
the package by creating clusters for it. Magic Cap can execute code on storage cards
directly, so users don’t have to copy packages to main RAM in order to use them.

When the user receives a package via electronic mail or beam, the package is packed
up. When the user puts a package on a RAM card, ejects the card, then reinserts the
card, the package remains in the same state it was in (unpacked or packed up) when
the card was ejected.

The package remains unpacked or packed up according to the state is was in when
created or the last time it was removed from Magic Cap

When a package is loaded for the first time, it can be unpacked or packed up. You
can set your package to unpack automatically upon loading. Otherwise, the package
will be packed up or unpacked according to its state before it was loaded.

As soon as a package is loaded, its objects can be used by other packages and by
Magic Cap, even if the package is packed up. However, users have no way to directly
access the objects in a package until it is unpacked. Packages in the communicator’s
ROM can be copied to RAM or to RAM cards, but can never be removed.

Packing and Unpacking
Virtually all packages provide a way for users to manipulate their contents and
perform actions, whether by installing new stamps in the stamper, adding a set of
tools, or providing a door in the hallway that leads to a scene. Every package can
specify a set of objects to be installed and a set of receivers that will get the objects.
When the package is unpacked, Magic Cap installs the objects in their receivers.
Icras, Inc. Confidential Package Development Guide 47

Chapter 3 Software Packages Package States
You specify the objects to be installed and their receivers in your package’s instance
definition file. The installationList field of the package content object refers to a list
of objects pairs. The first object in each pair is the object which receives installed
objects. The second object in each pair is the object to be installed.

When the package is unpacked, Magic Cap calls InstallInto for every receiver in
the installation list, passing the corresponding install object as a parameter. The
receiver’s class is responsible for installing the object appropriately. For example,
class StackOfCards overrides InstallInto to add the install object to its stack
after first checking to make sure the object is a card. Class InstallationQueue
overrides InstallInto to add the install object to its list of objects that should have
their installation deferred. You can create a class that overrides InstallInto if you
want it to act as a receiver of install list objects. See "Specifying a Package Content
Object" on page 54 for more information.

For each install object in the installation queue, Magic Cap calls the install object’s
DefaultReceiverForSelf operation to get the object’s default receiver. If this
receiver exists, Magic Cap will call its InstallInto operation. If the receiver does
not exist, and the install object is not an install specifier, Magic Cap will call
InstallFallback on the install object to allow the object to install itself in a
fallback receiver. If the install object is an install specifier, Magic Cap will repeat the
installation sequence on the object referred to in the specifier’s fallback field.

As each object is installed, the receiver’s InstallInto operation calls
InstallingInto for the install list object. You can create a class that overrides
InstallingInto if you want your objects to be notified just after they’ve been
installed. Additionally, install objects that inherit from class CanInstallSelf will
have their FinishInstallingSelf operation called after the object was
successfully installed.

Your package isn’t notified when it is being unpacked. You can find out when your
package is unpacked by including an object of one of your package’s classes as a
receiver in either the installation list or in an install specifier. Then, when the
package is unpacked, Magic Cap will call the package class’s InstallInto
operation, notifying it that your package is being unpacked.

When the package is packed up, Magic Cap removes the install list items from their
receivers. When a package is packed up, any objects it installed are removed from the
user’s view, but its objects are still loaded and available to Magic Cap and to other
packages. The package isn’t notified when the install list items are removed. For
more information on accessing package objects from another package, see "Dynamic
Linking" on page 50.

Technical Difficulties
Magic Cap may encounter unexpected errors during normal operation. When such
a situation arises, Magic Cap signals the error by throwing an exception. Magic Cap
throws different types of exceptions for different kinds of errors. Packages can set up
exception handlers to catch specific exceptions in an attempt to recover from the
error and continue normal operations.
48 Package Development Guide Icras, Inc. Confidential

Package States Chapter 3 Software Packages
If no exception handler has been set up that is able to handle a thrown exception,
Magic Cap will reset itself in an attempt to return to a stable state. After a reset
occurs, Magic Cap will throw away and rebuild all transient clusters. In this
situation, the most recent changes in transient RAM may not yet have been
committed to persistent RAM, causing these changes to be lost. If you use transient
objects in your packages, you must use special design considerations to recover from
a reset.

Whenever Magic Cap needs to rebuild the transient clusters, it will activate each
package in turn and call ReinitializeClass on all package classes. Typically,
you’ll use ReinitializeClass to recreate any transient buffers and other transient
objects that are lost when the communicator resets. Magic Cap also check object
fields of persistent objects that refer to other objects, making sure that the fields refer
to valid objects in persistent RAM. If any fields are found to have invalid reference
– which most likely happened because they were references to transient objects –
they are set to nilObject .

Any buffers you created with NewTransientBuffer or NewLockedBuffer are lost
when Magic Cap resets. Because you refer to transient and locked buffers with direct
pointers rather than references, Magic Cap won’t change the direct pointers, so these
pointers will be invalid after Magic Cap resets.

Power Off and On
By far the most common transitions for a package are the ones that occur when the
communicator’s power turns off or on. During the power-off process, Magic Cap
commits changes before turning off, causing objects to move from the package
changes cluster in transient RAM to the package shadow cluster in persistent RAM.

When the user turns the power on, Magic Cap calls ResetClass for every class.
ResetClass is used to notify servers and other objects that manage hardware that
the communicator has just powered up. For example, the object that manages the
speaker overrides ResetClass to make sure that any sound object that was being
played at power off is deleted when power returns so that it doesn’t continue to take
up memory after it has been used.

You should override ResetClass if your class controls a server or other hardware
resource that you want to set up when the communicator turns on. Unless you’re
creating servers or other hardware-controlling software, you’ll rarely override the
ResetClass operation. ResetClass is called after ReinitializeClass when the
communicator resets.

Removing Packages
The user can remove any package that isn’t in the communicator’s ROM. If the
package is in main RAM or on a RAM storage card, the user can throw the package
away and empty the trash, destroying the software package and its changes. If the
package is on a RAM storage card, the user can eject the card, unloading the package
and removing the package’s install list objects from their receivers.
Icras, Inc. Confidential Package Development Guide 49

Chapter 3 Software Packages Dynamic Linking
Packages in main RAM store their changes in RAM by default, while packages on
RAM storage cards keep their changes on the same card by default. If a RAM storage
card is inserted and the user has checked its new items go here option, changes will go
on the designated RAM card if the package uses the iNewItemsGoHere indexical or
calls NewItemNear to create new objects. If the packages doesn’t use these calls, the
new objects will go to the default location indicated above. See "Creating New
Objects on Storage Cards" on page 18 in the Object Runtime chapter of this book
for more information.

Dynamic Linking
Magic Cap uses component numbers to identify classes, objects, operations, class
operations, intrinsics, and indexicals. Whenever Magic Cap starts up, it will
dynamically assign new numbers to every component in the system and in all present
packages. When a package is integrated into a running Magic Cap environment, any
components defined by that class will be assigned new component numbers that do
not conflict with numbers already existing in the system. This process of
renumbering components is called dynamic linking. Dynamic linking provides
features that allow packages to share information. Packages can use these features to
implement several kinds of information sharing techniques, including:

• Creating objects of other packages’ classes.
• Creating subclasses of other packages’ classes.
• Calling operations defined by other packages’ classes.
• Importing and using objects stored in other packages.
• Exporting information about local package objects for use by other packages.
• Storing objects from other packages that are referred to by local objects.

This section provides information about how you can make components in your
package available for use from other packages.

WARNING! You should never use components defined by another package
unless the author of the other package has provided appropriate
information about the shared objects. Using objects from other
packages without thorough information can cause severe
software problems, including corruption of user data in persistent
RAM.

Exporting a Package Interface
When you create a package, you can create a package interface composed of
package components that can be used by other packages. The package interface is a
list of classes, operations, class operations, intrinsics, and indexicals that can be used
from outside your package. When you make a package interface available for use by
other packages, the interface is said to be exported. You specify the components of
your package you want to export with an interface definition an a class definition file.

Here is an example of an interface definition:
50 Package Development Guide Icras, Inc. Confidential

Dynamic Linking Chapter 3 Software Packages
// The ExportSample class is a class that can be used by other packages
define class ExportSample;

inherits from Object;

// public stuff
operation InstallIntoDrawer(toBeInstalled: Viewable);

// private stuff - not available to client packages
operation DoSomePrivateStuff();
field secretNumber: Unsigned;

end class;

// Indexicals declared in this package
indexical iPrototypeStampBank: ObjectList;
indexical iDrawerNames: Text;

// The package interface definition lists the components of this package
// which can be used from other packages. Interface definitions are
// usually defined in separate class definition files.
define interface ExportSampleInterface '/~genmagic.com/ExportSample/';

class ExportSample;
operation InstallIntoDrawer;
indexical iDrawerNames

end interface;

This example defines a package interface called ExportSampleInterface . This
name is known as the short name for the package interface. When other packages
wish to use components exported by this interface, they use the short name to
identify the interface. Magic Cap identifies package interfaces by unique long
names. The long name for this package interface is /~genmagic.com/
ExportSample/ . Long names for package interfaces are collected by Magic Cap into
tables called cliques when a package is integrated into a running Magic Cap
environment. When more than one package defines the same interface, Magic Cap
does not guarantee that one will always be used over the other.

This interface defines three components which are available for use by other
packages. Specifying a class in a package interface, like this example does with class
ExportSample , allows other packages to create new objects of this class, or to define
subclasses of ExportSample in a class definition file.

Specifying an operation allows other packages to call that operation. In this example,
other packages are able to call the InstallIntoDrawer operation. Note that
because the operation DoSomePrivateStuff is not listed in the package interface,
other packages cannot call this operation, even though the ExportSample class
which defines it is also exported.

Specifying an indexical in a package interface allows other packages to access the
object referenced by that indexical. This is how you would grant another package
access to objects in your instance definition file. In this example, the package
indexical iDrawerNames can be used from other packages as easily as this package
does.

Although it was not done in this example, you can specify class operations and
intrinsics in package interfaces in the same way.

When the class compiler encounters an interface definition, it will create a file
containing symbolic information that can be included by other packages. When
another package includes this information in its class definition file, the class
Icras, Inc. Confidential Package Development Guide 51

Chapter 3 Software Packages Dynamic Linking
compiler recognizes that it is using components defined by another package. Because
other packages must include information generated by the class compiler for your
interface definition, you usually keep interface definitions in a separate file from class
definitions in your package so that you don’t provide information about
components that should remain private to your package. For more information on
using exported package interfaces, see the following section, Importing a Package
Interface. More information is available about creating interface definitions in the
section on the class definition syntax in the Object Tools chapter of "Guide to Magic
Cap Development Tools".

Importing a Package Interface
When you create a package, you may want to use components that are defined by
another package. To use these components, you import a package interface. Once
you’ve imported another package’s interface, the components exported by that
interface can be used just as if they were defined by your package or by Magic Cap
itself.

Strong Imports
Before Magic Cap activates a package, it checks to make sure that all package
interfaces imported by that package are present. If any of the imported interfaces is
not installed, Magic Cap will not activate the package. This type of dependency on
imports is known as a strong import, and is normally how packages import
interfaces.

To use components from another package, you import the interface from that
package in a class definition file. This is done by specifying the import keyword
followed by the short name of the package interface. Here is an example of how you
would import the interface of another package:

import ExportSampleInterface;

By importing ExportSampleInterface, you will be able to use any class, operation,
class operation, indexical, or intrinsic listed in this interface as if these components
were defined by your package, or by Magic Cap itself.

Magic Cap makes sure that all interfaces your package rely on are available for use
before your package is activated. You can specify a custom message that will be
shown to the user in case the interfaces your package relies upon are not all present.
You create this message in your instance definition file and define an indexical to
refer to it:

indexical iMissingNeededInterface = (Text missingInterfaceMessage);

instance Text missingInterfaceMessage;
 data: 'This package cannot be used because it relies on another'
 'package which is not installed in your communicator.';
end instance;

This indexical is specified in the import statement in the class definition file:

import ExportSampleInterface or say iMissingNeededInterface;
52 Package Development Guide Icras, Inc. Confidential

Dynamic Linking Chapter 3 Software Packages
Whenever this package is integrated into a running Magic Cap environment, Magic
Cap will present an announcement window containing this text if the interface
named ExportSampleInterface can not be found.

Weak Imports
If your package can still provide services even if some package interfaces it normally
uses are not present, Magic Cap can activate your package if you’ve specified a weak
import dependency on other package interfaces. If your package weakly imports
other package interfaces, Magic Cap will activate your package, but your package
code is then responsible for checking for the existence of components from other
package interfaces before using them.

To weakly import an interface, use the weakly import keyword in your class
definition file:

import ExportSampleInterface weakly;

Because a Magic Cap will not prevent a package from being activated if a weak
import is missing, you never use the or say keyword in conjunction with a weak
import.

Before you use a weakly imported component in package code, you must check to
make sure that it is available by comparing it against the appropriate nil component
value. Here are examples of how you would make that check:

// Weakly imported components are resolved to the corresponding nil
// component value if the package that defines their interface is not
// available.
if (ExportSample_ != nilClass) {
 // The ExportSample class is available for use.
}

if (ExportSample_InstallIntoDrawer != nilOperation) {
 // The InstallIntoDrawer operation defined by ExportSample can be
 // called from this package
}

if (iDrawerName != nilObject)
 // The iDrawerName package indexical can be used directly from another
 // package.
}

You can mix weak and strong imports in your class definition file. Doing this would
mean that your package would not be activated if any of the strong imports are not
available, but would still be activated even if some of the weak imports are not
available. Remember that your package code is responsible for checking for the
availability of weakly imported components before any attempt is made to use the.
Here is an example of using both weak and strong imports in a class definition file:

// The package will not be activated unless ExportSampleInterface is
// available.
import ExportSampleInterface;

// The package will still be activated even if WeakExportSampleInterface
is
// not available.
import WeakExportSampleInterface weakly;
Icras, Inc. Confidential Package Development Guide 53

Chapter 3 Software Packages Creating a Package
// The package will not be activated unless ExportSampleInterface is
// available. If this interface is not available, the message specified
// by iArrangerNotAvailable is displayed to the user.
import ArrangerInterface or say iArrangerNotAvailable;

Creating a Package
This section describes the objects you must include in your instance definition file
when you create a new package. The most important object is the package contents
object itself, but there are various other required objects.

Required Objects
When you create a software package, you must declare exactly one member of class
SoftwarePackageContents in your instance definition file. The package content
object refers to many other objects, acting as the root of a tree of objects. Taken
together, all the objects you specify in the instance definition file form the package
in its initial state when the package is loaded by Magic Cap.

Most packages will include the following objects, referred to by the package content
object:

• An object list of the objects to be installed into Magic Cap when the package is
unpacked and the corresponding receivers for each of these objects.

• Two objects of class FullContact that specify the author and publisher of the
package.

• A text object that specifies the version number of this package.
• An object list of indexicals that refer to all of the package’s scenes, including the

scene that should appear when the user starts using the package. Some packages
have no scenes, and so don’t have this object list.

• An object list of indexicals that refer to all of the package’s stacks of cards. Some
packages have no stacks, and so don’t have this object list.

• A list of helpful objects to be placed in information windows, and the
corresponding scenes and windows that display the information windows.
Packages with no scenes or windows don’t have this list.

The smallest typical package would contain a package content object, the installation
list, a version number, and the objects to be installed.

Specifying a Package Content Object
The package content object contains many fields. This section describes each field of
the package content object. When you create a software package, you’ll probably
clone an existing package, including its package content object. You can use this
section as a guide to interpreting or changing the values in the package content
object’s fields.

The first four fields, dateCreated, timeCreated, dateModified, and timeModified, are
inherited from superclass HasDate . These fields specify the date and time the
package was built and the date and time the package was last changed by the user.
54 Package Development Guide Icras, Inc. Confidential

Creating a Package Chapter 3 Software Packages
You should set these fields to zero. The object compiler will fill in the correct date
and time for the package’s creation, and Magic Cap will maintain the fields that
specify the date and time for user changes.

The next two fields are inherited from superclass PackageContents and help
determine what happens when the package is loaded and unpacked. These fields are
autoActivate and installationList.

Use the autoActivate field to indicate what will happen when the package is loaded.
If autoActivate is true when the package is loaded, Magic Cap will unpack the
package and go to the scene indicated by the startupScene field (described below). If
autoActivate is false when the package is loaded, the package will be packed up when
it is loaded.

The installationList field refers to a list of object pairs. The first object in each pair is
the object that will be the receiver of an install object. The second object in each pair
is the install object itself. When the package is unpacked, Magic Cap calls InstallInto
on each receiver to perform the installation. You should list in the installation list
every object you want to install into Magic Cap when your package is unpacked,
coupled with its receiver, which directly precedes it in the installation list. See "How
Packages Install Objects" on page 44 for more information.

When the user packs up your package, Magic Cap updates the installation list by
removing any objects it installed that are no longer in your package. These objects
may have been thrown away, moved into main memory, or otherwise detached from
the package. In addition to removing missing objects from the installation list, Magic
Cap changes these lists to reflect the current state of your package’s cards and stacks.
If the user has added cards to or removed cards from your stacks, the installation list
will reflect those changes.

For example, if your package installs a card in the name card file with the installation
list and the user deletes that card, Magic Cap removes the card and name card file
from the installation list. Similarly, if the user adds any cards to stacks defined by
your package, Magic Cap changes your package’s install and receiver lists to include
the new cards and stacks.

When the user unpacks your package again, Magic Cap again installs the installation
list cards into their stacks. For this reason, you should include your package’s cards
and stacks in the installation. In addition, you should define indexicals that refer to
all your package’s stacks, and list them in the in stackIndexicalList field of your
package. When Magic Cap cleans up following an emergency shutdown or other
serious error condition and finds a package card that has somehow become
disconnected from its package, it uses the stacks in this list to put the card back in its
package.

The rest of the fields in the package content object are defined by class
SoftwarePackageContents itself and provide miscellaneous details about the
package, many of them used internally by Magic Cap.

The author field refers to contact information for the author of the package. You
should include in your package a full contact that specifies you as the author. Magic
Cap uses this information to display the package author’s name in the package
storeroom scene.
Icras, Inc. Confidential Package Development Guide 55

Chapter 3 Software Packages Creating a Package
You can use the publisher field if your package has separate entities for author and
publisher. If you want to specify a publisher, include a full contact for the publisher
and set this field to refer to it. Magic Cap uses this contact to display the package
publisher’s name in the package storeroom scene.

If you want the author and publisher’s name and address information to appear in
the name card file, you can provide contacts that contain the author and publisher
information and install the contacts in the contact master list
(iContactsMasterList) by using the installation list.

The versionText field is used to specify a text representation of the version of your
package. This will usually by a version number, such as “1.0,” or “7.5”, but can be
you can use any string that the user can use to differentiate between different releases
of your package, like “PackageSceneSample for Workgroups,” and
“PackageSceneSample ‘97.” Magic Cap displays this information in the package
storeroom scene.

The helpOnObjects field contains a list of objects with helpful tips on how to use
various parts of your package. The list is composed of object pair entries, much like
the installation list. The first object in each pair is known as the object needing help,
and is usually a scene or a window. The second object in each pair is the help object.
The help object can be a text object, or a list of viewables that contains graphical
elements as well. Whenever Magic Cap displays a scene or window from your
package, it will search the help list to see if that scene or window is an object needing
help. If so, Magic Cap will put a circled question mark in the upper left corner of the
scene or window. If the user touches this question mark, Magic Cap displays the
correct help object in a window.

You can specify objects other than scenes and windows in your package’s
helpOnObjects list. If you do this, you should display the circled question mark image
whenever any of those objects are visible so the user knows that help is available for
those objects. The circled question mark is available through the iHelpImage
indexical.

By default, Magic Cap looks only in the list specified in the helpOnObjects field of
packages to determine if help objects are available. To specify help in other locations,
you can override the Info attribute of the object needing help.

The sceneIndexicalList field should contain a list of indexicals that refer to any scenes
created by your package that Magic Cap should know about. Magic Cap can add any
rules for scenes appearing in this list to the book of rules in the library.

The stackIndexicalList field should contain a list of indexicals that refer to any stacks
of cards in your package. When Magic Cap cleans up following a reset and finds a
package card that has somehow become disconnected from its package, it uses the
stacks in this list to put the card back in its package.

If your package uses cards and stacks of cards, you should specify each card
individually in your package’s installation list, with the stack of cards it should be
located in as the corresponding receiver. The stack should be specified with an
indexical from the stack indexical list. If the user ever moves a card out of one of your
stacks, Magic Cap updates the installation list entry for the card with the stack the
user has moved the card to.
56 Package Development Guide Icras, Inc. Confidential

Creating a Package Chapter 3 Software Packages
The startupScene and startupItem fields of the software package are used by Magic
Cap to determine where to take the user when the go to button in the package
storeroom scene is touched. Use the startupItem field to specify the main entrance to
your package. When the user touches the go to button, Magic Cap will go to the
scene containing the entrance and draw attention to it by flashing it. If Magic Cap
cannot determine where the startup item is, it will go to the scene specified by the
startupScene field. You would usually specify nilObject in this field unless your
package’s main entrance is in a non-standard location.

The creditsScene field should contain a place, usually a scene, that displays more
information about your package. Magic Cap goes to this scene when the user touches
the credits button in the package storeroom scene. If you specify nilObject in this
field, Magic Cap will not display the credits button.

The logo field of the software package content can refer to an image to be displayed
next to the name of your package in the package storeroom scene.

The responseCardStationery field of the software package can be used to specify a
stationery object in your package. If this field is not nilObject , the respond button
in the package storeroom scene is enabled. When the user touches respond, Magic
Cap will create a new message card from your stationery and take the user to the
message scene.

Use the hidden field to indicate whether the package appears on the shelf in the
storeroom. If you set hidden to true, your package won’t appear on the shelf in the
unless the user turns on the Show hidden packages rule in the storeroom. You should
set hidden to false, unless your package is an accessory to another package and that
main package provides a user interface for removing both packages.

The dontDeactivate field is used internally by Magic Cap. You should set it to false
in your instance definition files.
Icras, Inc. Confidential Package Development Guide 57

Chapter 3 Software Packages Creating a Package
The following figure shows the package’s storeroom scene and indicates the source
for each item in the scene.

Figure 3 Storeroom scene with sources of information

Indexicals
Magic Cap provides several indexicals that contain useful objects related to packages.
You can use iNameBarPackage to get the tiny image of a storage box that is placed
in the name bar to show that a card or other object belongs to a package is. You can
read iPackageScene to get the scene used by Magic Cap for a package’s storeroom
scene.

You can get or change iResetPackagePrompt , which contains the text that appears
in an announcement when the user touches the reset package button in the Magic
Lamp.

When the user mails a package by touching the mail button in the Magic Lamp in
the package’s storeroom scene, Magic Cap creates a new telecard from
iSendPackageStationery to enclose the package. When the user beams the
package, Magic Cap uses iBeamPackageStationery to create the telecard. You
can read or change these objects by using the indexicals.
58 Package Development Guide Icras, Inc. Confidential

4
Viewables

Magic Cap provides a rich graphical environment for both users and developers.
Viewable objects make up the core of this environment. This chapter describes
viewables, objects that are members of class Viewable . All objects displayed on the
screen by Magic Cap are members of class Viewable ; that is, they are instances of
classes that descend from class Viewable . In this chapter, you will learn how
viewables are organized and drawn, and how they can respond to user interactions.

Figure 4 Some viewables

This chapter assumes you are already familiar with the Magic Cap development
environment, and already know how to create basic Magic Cap packages. To learn
about the Magic Cap development environment, see "Guide to Magic Cap
Development Tools". See this book’s chapter on Software Packages to find out how to
create a basic package. You should also be familiar with basic concepts of the Magic
Cap runtime, as described in the Object Runtime chapter of this book.

Viewable classes perform the tasks of managing objects on the screen. Many of these
tasks are related to drawing and redrawing viewables and involve x-y coordinates,
viewable parts, highlighting, labels, images, shadows, and visibility and other
viewable states. In addition, viewables work with tools to handle user touches,
including selection, moving, copying, stretching, and dropping viewables.

Viewable is an abstract class; you can’t create instances of it. Instead, you will always
create instances of subclasses of Viewable . Class Viewable defines the basic fields
and operations that are common to all viewable objects. Many subclasses will
Icras, Inc. Confidential Package Development Guide 59

Chapter 4 Viewables Geometry and Viewable Parts
override operations to customize behavior that occurs when these operations are
called. The fields and operations discussed in this chapter are all defined by
Viewable .

Geometry and Viewable Parts
This section presents fundamental concepts that include basic data structures for
describing x-y coordinates and the component parts of viewables. These topics
together describe the geometry of viewables.

Dots and Boxes
Magic Cap imposes an x-y coordinate plane and places viewables on that plane.
Magic Cap represents points on the coordinate plane with the data type Dot . For
simplicity and unlike most elements in Magic Cap, dots are simple data structures
rather than objects. Type Dot is defined as follows:

typedef struct
{
longh;
longv;
} Dot;

A dot simply consists of the x and y coordinates (represented by the h and v fields,
respectively) that identify a point on the coordinate plane.

Magic Cap also defines type Box for describing rectangles on the coordinate plane.
Boxes, like dots, are defined as simple data structures rather than as a class of objects.
Following is the definition for type Box:

typedef struct
{
longleft;
longtop;
longright;
longbottom;
} Box;

A box is defined by specifying the x-y coordinates that describe its upper-left and
lower-right corners.

Note: Magic cap also defines a class Box, which is a simple framed viewable. Type
Box and class Box are not related, so be sure not to confuse the two.

Magic Cap uses x-y coordinates to specify the location of viewables. For more
information on x-y coordinates and the coordinate plane, see the section "X-Y
Coordinates" on page 67.
60 Package Development Guide Icras, Inc. Confidential

Geometry and Viewable Parts Chapter 4 Viewables
Parts of Viewables
Viewables are divided into various parts. Some of a viewable’s parts are associated
with distinct objects related to the viewable. For example, each viewable can have a
shadow, described by a shadow object that is an attribute of the viewable. The
following figure shows an example viewable: an image with a border, a shadow, and
a label.

Figure 5 An example viewable

Viewable boxes
There are three important rectangles associated with each viewable. Magic Cap uses
type Box to represent each rectangle. The content box describes the main part of the
viewable; for example, a stamp’s content box encloses its image. The border box
indicates the part a viewable where the outer edge of its border is drawn if it has a
border. Many viewables have no borders; the border boxes of those viewables are the
same as their context boxes. The bounds box encloses the viewable and all
adornments drawn with the viewable, including its label, border, and shadow.

Figure 6 Boxes are indicated by thin gray lines

Class Viewable provides many operations that work with these three boxes. The
most basic operations are used to get the boxes in viewables: ContentBox for the
content box, BorderBox to get the border box, and BoundsBox to get the bounds
box. You can also change the content box by calling SetContentBox . The border
box and bounds box can’t be set directly. Instead, they are changed indirectly when
you change the content box with SetContentBox .

Viewables objects don’t actually store these boxes. Instead, each viewable object
stores its height and width in its contentSize field. When you call an operation to get
the box around a viewable, the box is actually calculated from the value in this field.
You can customize how the boxes are computed by overriding CalcContentBox ,
CalcBorderBox or CalcBoundsBox .
Icras, Inc. Confidential Package Development Guide 61

Chapter 4 Viewables Geometry and Viewable Parts
You can determine the width and height of the content box separately by calling
ContentHeight and ContentWidth . You can also set the content’s width and
height separately by calling SetContentWidth and SetContentHeight .

The content box, bounds box, and border box are coordinate based. If you move a
viewable on the screen, the values returned by ContentBox , BoundsBox , and
BorderBox will reflect the viewable object’s new location on the screen. You can
determine the absolute size of the content box in pixels by calling ContentSize , and
you can set the size of the content box with SetContentSize .

You can use AdjustSize to have objects of your viewable subclass recalculate their
content box when you perform some action on them. To do this, override
AdjustSize to perform the calculation that resizes the content box, and call
AdjustSize after taking the action that should cause the viewable to resize its
content.

You can find out the absolute height and width of a viewable’s content box by calling
Thickness .

Borders
Each viewable can have a border drawn outside its content box. The viewable’s
border box encloses the viewable and its border. The viewable’s Border attribute
provides access to its border. Users can add borders to most viewables by dropping
border coupons on them. The following figure shows several examples of viewables
with borders.

Figure 7 Viewables with borders

Note: Although viewables provide a Border attribute, support for borders is
incomplete in class Viewable . To add borders, your viewable subclass should inherit
from mixin class HasBorder . See "Borders and Shadows" on page 80 for more
information.

Shadows
When the user slides a viewable on the screen, Magic Cap draws the viewable with a
shadow as a visual cue to indicate that it has temporarily been lifted above other
objects on the screen as it is being moved. When the user stops sliding the viewable,
the shadow disappears. In addition to this temporary shadow, viewables can have a
shadow that is always drawn, even when the viewable isn’t being moved. For
62 Package Development Guide Icras, Inc. Confidential

Geometry and Viewable Parts Chapter 4 Viewables
example, windows are drawn with a shadow, and users can add shadows to most
viewables by dropping shadow coupons on them. The viewable casts its shadow
downward and to the right, as if the light source were at the upper-left corner of the
screen. The viewable’s Shadow attribute provides access to its shadow. The following
figure shows some examples of viewables with their shadows.

Figure 8 Viewables with shadows

Labels
Each viewable has a label that can display the viewable’s name. A viewable can
display its label at any one of 15 different positions, as shown in the following figure.

Figure 9 Available label positions

Labels can have frames. In the preceding figure, label positions 0 through 7, 13, and
14 are shown with frames. Although every viewable has a label, many viewables don’t
display their labels in any position.

You can show or hide the label, change the label’s location, change the label’s text
with a text coupon from the keyboard’s label maker, or turn its border on or off by
tinkering with the viewable in Magic Cap simulator. You can call ApplyText to
change the label’s text; call Label to get the label’s text. You can use the ShowLabel
attribute to get and set whether the label is shown, and the LabelLoc attribute gets
and sets the position of the viewable’s label. The BorderLabel attribute gets and
sets whether the label is drawn with a frame. The CanShowLabel attribute
determines if the viewable’s label should ever be shown. You can override
CanShowLabel in your viewable subclasses to prevent the label from ever appearing.
Icras, Inc. Confidential Package Development Guide 63

Chapter 4 Viewables Ordering and Containment
A viewable can use a different text style for its label and for text in the viewable’s
content. You can get or set the label’s text style by using the TextStyle attribute.
You can get or set the content’s text style by using the ContentTextStyle attribute.

When the user touches a viewable on the screen, Magic Cap determines which
viewable was touched, then asks the viewable to determine which part of it was
touched. These topics are covered in detail in "Touching Viewables" on page 73. See
"Hit Testing" on page 79 for more information about parts of viewables.

Ordering and Containment
This section describes how viewables can be related and connected. These
relationships determine how viewables are drawn and how they behave when users
touch them.

Viewables can be associated by a containment relationship. If a viewable is contained
by another, it is drawn inside its container, and its appearance is clipped to its
container; that is, no part of it is drawn that would appear outside its container.
Graphically, a viewable contained by another appears to be tucked inside its
container, as shown in the following figure.

Figure 10 Viewables clipped by their container

A viewable contained by another is the subview of its container. A viewable that
contains another is the superview of its contained object. Given a viewable, you can
call its Superview operation to get its containing viewable, its FirstSubview
operation to get its rearmost contained object, or its LastSubview operation to get
its frontmost contained object. If a viewable has no container or no contained object,
the appropriate operation returns nilObject .

You can find out if a particular viewable is contained by another viewable by calling
the container’s IsSubviewOf operation. You can see if a viewable has any direct
subviews of a particular class by using the FirstSubviewOfClass operation.

To perform a particular operation on all the subviews of a container by using the
EachSubview operation. This operation takes a function as a parameter, and will
call that function for each subview of the viewable you specify.

Class Viewable also defines many operations to find information about a viewable’s
superview. You can determine if a viewable is contained by a specific Viewable
subclass by calling the EnclosingViewableOfClass operation. This operation
returns a viewable of the specified class that is a superview of self . Because viewables
64 Package Development Guide Icras, Inc. Confidential

Ordering and Containment Chapter 4 Viewables
commonly appear on cards, in scenes, or in windows, Magic Cap defines high level
operations, EnclosingCard , EnclosingScene , and EnclosingWindow , to find
containers of those classes.

When the user rearranges viewables on the screen and changes their containment
relationship by sliding viewables into and out of other viewables, Magic Cap updates
the viewables to reflect their changed status, and the many containment operations
return the updated information. You can call SwitchContainer to remove a
viewable from its container and install it in another container. You can override
ChangedContainers to be notified when a viewable’s superview has changed. You
can override ChangedContents to be notified when a subview is about to be added
or removed from a viewable.

Viewables that share the same superview form a view chain. View chains are stored
as ordered lists inside the containing object. When viewables in a view chain are
drawn, this list determines their back-to-front positions on the screen. The closer a
viewable is to the front of the list, the further back it will appear on the screen. You
can also keep a list of viewables in an object of class ObjectList to create view
chains with no superviews.

Given a viewable, you can call its Next operation to get the viewable in front of it in
its view chain, or its Previous operation to get the viewable behind it in its view
chain. If a viewable is rearmost or frontmost in its list, the appropriate operation
returns nilObject . When the user rearranges viewables on the screen and changes
their back-to-front positioning, Magic Cap updates the list to reflect the changed
order, and Next and Previous return the updated information.

A viewable in a view chain does not directly refer to the viewables in front of or
behind it; the back-to-front ordering is maintained by the list. All viewables refer to
their superview. The following figure illustrates the relationship between viewables.

Figure 11 Viewables in a view chain

This view chain would look like this in an instance definition file:

instance Box allBoxedUp;
... // Other fields in a viewable
subivew: (Stamp penguin);
subview: (Button extendButton);
Icras, Inc. Confidential Package Development Guide 65

Chapter 4 Viewables Ordering and Containment
subview: (Stamp pumpkin);
end instance;

You can make a viewable the rearmost subview, i.e., be the first viewable in a view
chain, by calling SendToBack . You can make a viewable the frontmost subview in a
view chain by calling BringToFront .

You can add new viewables to a view chain by using the SwitchContainerAt
operation. This operation will insert a viewable into a view chain at the specified
position. To detach a viewable from a view chain, call Unlink .

You can disable a viewable’s ability to act as a superview: use the CanContain
attribute to get or change the setting of a viewable’s superview capability. If you want
to create a subclass of viewable with objects that should never be made frontmost in
their view chain, you can override their CanBringToFront attribute to return
false . For example, cards override CanBringToFront to always return false,
ensuring that cards are never brought to the front of their view chain. Similarly, if
you want to create a subclass of viewable with objects that should always be
frontmost in their view chain, you can override their AlwaysOnTop attribute to
return true . Viewables that are always on top can never change containers and can
never be swallowed.

View Hierarchies
This section describes how viewables are grouped together into view chains and
containment relationships to form complex collections of objects. This section also
describes the most important such collection of viewables: the one that contains the
viewables on the screen.

Viewables are often collected into a view hierarchy, a potentially complex group of
viewables that can include multiple view chains and containment relationships. The
viewables on the Magic Cap screen are an example of a view hierarchy.

Magic Cap defines exactly one object of class Screen . This screen object is the
ultimate superview of all viewables that are drawn on the Magic Cap screen. The
screen and its subviews form the screen view hierarchy, which contains all the
objects visible to the user. If a viewable is drawn on the screen, it is in the screen view
hierarchy. You can test whether a viewable is in the screen view hierarchy by using
the OnScreen attribute. However, not every viewable in the screen view hierarchy is
necessarily drawn on the screen: a viewable may have coordinates that place it off the
screen, for example.

All implementations of Magic Cap have a screen size of 480 by 320 pixels. Future
versions may support other screen sizes. One pixel equals 256 microns (a micron is
one millionth of a meter). You can convert micron values to pixels with the
MicronToPixel macro defined by Magic Cap. If you must put explicit coordinate
values in your package, you can use this macro to specify the values in microns, then
convert them to pixels at runtime, making your package more independent of
changes to Magic Cap screens in future versions.

The screen isn’t the only example of a view hierarchy. There are many other
collections of viewables, assembled into view hierarchies offscreen, which are drawn
on the screen at the appropriate time. For example, a simple view hierarchy might
66 Package Development Guide Icras, Inc. Confidential

Ordering and Containment Chapter 4 Viewables
be assembled for a window that displays an announcement to the user. This
hierarchy might include an image, a text object, and the window itself. When the
appropriate situation arises for displaying the window, it is added to the screen view
hierarchy and shown on the screen.

The user can change containment and back-to-front ordering by moving viewables
around on the screen. The user can deposit a viewable into a willing container simply
by sliding it to that new container. In addition, whenever the user moves a viewable,
the viewable is brought to the front of its view chain.

When you create packages, you’ll specify most of your viewables at build time in
instance definition files. You’ll use these instance definitions to organize your
viewables into various view hierarchies. Magic Cap will place these viewables into the
screen view hierarchy when they are needed, according to user actions or your
package’s code.

For example, suppose you create a package that installs a door in the Magic Cap
hallway. When the user opens the door to start using your package, Magic Cap
installs your package’s scene and its subviews in the screen view hierarchy. Your scene
is installed as the first subview of the screen. The screen’s other subviews (the name
bar and the control bar) are installed in front of your scene.

Because the first subview is rearmost, the name bar and the control bar will always
be drawn over the scene if the bars and the scene overlap, making sure they are always
visible. To avoid this overlap, you should create your scene in your instance
definition file with a content size of 480 by 256 pixels to ensure that it fits between
the name bar and the control bar in current versions of Magic Cap.

X-Y Coordinates
Magic Cap defines x-y coordinates that indicate the positions of viewables on the
screen. Each viewable denotes its position by expressing its own center point as a
position relative to its superview’s center point. In this way, every viewable that
contains other viewables imposes its own local coordinate system on its subviews.
Magic Cap assigns coordinate 0,0 (the origin) to the center of every superview.

Note: The location of the origin is an arbitrary choice in any graphics system. The
center was chosen as the origin for viewables as part of an overall design strategy for
fast viewable drawing in Magic Cap.

X-coordinate values increase from left to right, and y-coordinate values increase from
top to bottom. Coordinates are always expressed in microns. You can convert from
microns to pixels with the MicronToPixel macro.

Coordinate values are specified in instance definition files by a pair of real numbers
enclosed in angled brackets. Although coordinate values are expressed in microns at
runtime, they are defined as pixels in your instance definition files. At build time,
the object compiler will automatically convert these values into microns.

Following are examples of coordinate values specified in pixels:

Instance MiniViewable unnamed;
Icras, Inc. Confidential Package Development Guide 67

Chapter 4 Viewables Ordering and Containment
 relativeOrigin: <3.0,-19.5>; // pixels
 contentSize: <292.0,23.0>; // pixels
End Instance;

When you use the Inspector to view objects at runtime, coordinates are always
displayed as pixels. If you examine the actual values in memory using a debugger,
you’ll see that they are stored as microns.

Because viewables express their origin in coordinates relative to their superview, the
origin is known as the relative origin. Magic Cap provides the RelativeOrigin
and SetRelativeOrigin operations to get and set a viewable’s relative origin.

You can also get and set the viewable’s origin in global coordinates, which are
coordinates relative to the upper-left corner of the screen. Call Origin to get the
origin of the viewable in global coordinates; call SetOrigin to set a new origin for
the viewable, using global coordinates. When you use global coordinates, x-
coordinate values increase from left to right and y-coordinate values increase from
top to bottom, as with local coordinates.

Sample Screen View Hierarchy
The following figure shows an example of a screen view hierarchy.

Figure 12 A sample view hierarchy

This figure shows a modified screen from the Hello World sample package. The
following view hierarchy describes this screen (indented lines indicate subviews):

Screen
Scene 'Hello World'

Greeter 'Hello Concepts'
Box 'outer'

Stamp 'heart'
Stamp 'good night'
Box 'inner'

Switch 'try'
Switch 'try again'
68 Package Development Guide Icras, Inc. Confidential

Ordering and Containment Chapter 4 Viewables
Name Bar (and its subviews)
Control Bar (and its subviews: desk button, stamper, and so on)

The ultimate superview is the screen object, which is always the outermost container
of viewables displayed on the screen. By convention, the screen’s first subview is
always a scene object, containing everything except the bars at the top and bottom
of the screen.

The scene’s first subview is the viewable named “Hello Concepts”, and the next
subview is the outer box. The outer box’s subviews are two stamps and another box,
and the inner box has two subviews itself, both switches. Note that in general, the
deeper a viewable is in the hierarchy, the smaller its area: the screen object fills the
entire screen; the scene encloses the area between the top and bottom bars; the
subviews cover a smaller area.

Viewables that have the same superview are connected in a view chain. In this
example, the scene, name bar, and control bar have the same superview (the screen),
so they form a view chain. Other view chains in the example include the “Hello
Concepts” viewable and the outer box; the two stamps and the inner box; and the
two switches.

To demonstrate how viewables use their relative origins, the view hierarchy above is
repeated below, this time including the relative origin of each viewable in pixels.
Remember that the upper-left corner of the screen is location 0,0.

Screen <240.0, 160.0>
Scene 'Hello World' <0.0, -8.0>
Greeter 'Hello Concepts' <-63.0, -12.0>
Box 'outer' <60.5, -0.5>

Stamp 'heart' <-50.0, 50.0>
Stamp 'good night' <45.5, 62.0>
Box 'inner' <-4.0, -50.0>

Switch 'try' <-39.0, -15.0>
Switch 'try again' <-39.0, 10.0>

Name Bar <0.0, -148.5>
Control Bar <0.0, 140.0>

Each viewable’s relative origin indicates the distance between its center and its
superview’s center. A viewable with two positive coordinates in its relative origin,
such as the “good night” stamp in the hierarchy above, is centered below and to the
right of the center of its superview (the “outer” box), while a viewable with two
negative coordinates, such as the “try” switch, is centered above and to the left of the
center of its superview (the “inner” box).

If a viewable has 0,0 as its relative origin, its center is at the same location as its
superview’s center.

You can change a relative viewable’s location within its superview by calling the
MoveBy operation. You can shift all of a viewable’s subviews by a relative amount
with the MoveSubviewsBy operation.
Icras, Inc. Confidential Package Development Guide 69

Chapter 4 Viewables Drawing
Drawing
This section discusses how to ensure that viewables are drawn and redrawn
appropriately on the screen. This section also includes information on how to
implement drawing if you create your own subclass of viewable.

Redrawing Viewables
When the user manipulates viewables, Magic Cap takes care of redrawing the
viewables that are affected by the user’s action - you don’t have to take any action to
make sure the screen is redrawn correctly. The process for drawing Magic Cap
viewables is typically as follows:

• Some action occurs that requires a viewable to be drawn or redrawn. For example,
the user drops a color coupon on a viewable. The viewable’s data structures are
updated to reflect the change.

• The viewable calls operations indicating that part of the screen now contains
obsolete information and must be redrawn. The obsolete parts of the screen are
said to be dirty.

• Magic Cap asks the viewables in the dirty screen areas to draw themselves.

Magic Cap asks a viewable to draw itself by calling its Draw operation. You should
override Draw if you create a subclass of Viewable that defines objects drawn
differently than objects of its superclass.

This automatic redrawing takes place whether the viewables are system objects, such
as built-in stamps, or viewables created by packages, including your own packages.
You can implement Draw in any viewable subclasses you create, and Magic Cap will
call it automatically when your viewables have to be drawn.

Viewables define many operations that change their appearance, such as
SetHighlighted , Hop, SetName, SetVisible , and SwitchContainer . Every
operation that changes a viewable also ensures that the viewable is redrawn - you
don’t have to take any action to update the screen.

However, if you perform redrawing in an unusual way, such as by changing the fields
of a viewable directly, you may have to take action yourself to make sure the changed
viewable is redrawn correctly. Magic Cap provides a set of operations you can call to
ensure that the viewable is redrawn, as follows:

operation DirtyBox(dirtyBox: Box);
// Part of the viewable or subview has changed

operation DirtyContent();
// The content part of the viewable has changed

operation DirtyBounds();
// The viewable has changed; all of it must be redrawn

operation DirtyHide();
// The viewable is going away, moving, or changing

operation DirtyShow();
// The viewable is about to appear or reappear
70 Package Development Guide Icras, Inc. Confidential

Drawing Chapter 4 Viewables
You can call these operations when you want to force all or part of a viewable or its
subviews to be redrawn. When you call one of these dirtying operations, you inform
Magic Cap that part of the screen is no longer drawn correctly and must be redrawn.
The dirtying calls don’t actually redraw anything. Instead, they mark parts of the
screen as needing redrawing. Magic Cap updates the dirty parts of the screen by
calling the Draw operation of the appropriate viewables at idle time - when no other
actions are pending - or immediately when the user switches scenes.

If you want to force Magic Cap to redraw the dirty parts of the screen immediately,
without waiting for the next periodic update, you can call RedrawNow. This
operation asks all dirty viewables to redraw at once. To avoid slowing down Magic
Cap unnecessarily, you should call RedrawNow only when you want to redraw all the
dirty viewables on the screen immediately.

Drawing Your Own Viewables
As mentioned above, Magic Cap calls a viewable’s Draw operation if the viewable has
been marked dirty and must be redrawn. Although class Viewable defines operation
Draw, no method is included for it. Instead, concrete viewable subclasses must
override Draw to perform their drawing action.

When you override Draw, you can use several techniques to perform your drawing.
If your viewable contains an image that rarely or never changes, you can use the
Image attribute to associate your viewable with an image. If you do, you should call
DrawShadowedImage in your subclass to draw the viewable’s image along with its
shadow, if any. Class Stamp uses this technique. Each stamp has an image, and
Stamp_Draw simply calls DrawShadowedImage .

If your viewable is more dynamic and can’t be described by an image, you can use
Magic Cap’s graphics operations to perform drawing in its Draw override. Class
Canvas defines many graphics operations you can use, including FillBox ,
CopyPixels , and InvertBox .

Clipping
When a viewable is drawn, Magic Cap ensures that only the appropriate area of the
screen changes, prohibiting any drawing from taking place outside the bounds of the
viewable. The process of restricting drawing to a given area is called clipping.
Whenever a viewable is drawn, a clipping path defines the area in which drawing will
occur.

When Magic Cap calls Draw to ask a viewable to draw itself, it sets up a clipping path
to limit the drawing that will take place. Magic Cap forms this clipping path by
computing the area of the viewable that is not covered by any objects in front of it.
When you override Draw, any drawing you do will automatically be limited to the
area described by the clipping path. You can get the clipping path that Magic Cap
has set up by calling CurrentClip .
Icras, Inc. Confidential Package Development Guide 71

Chapter 4 Viewables Drawing
Although Magic Cap prevents anything from being drawn outside the clipping path,
it takes some time to perform drawing, even if the drawing is clipped and never
appears on the screen. If you can use logic inside your Draw override to determine
that some part of your viewable need not be drawn, you should simply avoid drawing
that part.

You may also be able to speed up your drawing if you can reduce the area of the
clipping path. Normally, you’ll just draw and let Magic Cap’s clipping mechanism
prevent anything from being drawn outside the clipping path. If you know that some
additional part of the viewable should be clipped, you can modify the clipping path
with operations of class Path before passing it on to graphics operations.

Call Clipped to determine if a particular box in the viewable is clipped by its
superviews or subviews. The box is described in global coordinates.

Highlighting
When the user takes an action that involves a momentary selection of a viewable,
such as holding a border coupon over a box before dropping it in, sliding a telecard
to the out box, or tapping a button, one of the viewable involved is drawn in a special
highlighted state to indicate that something is about to happen to it. Magic Cap
provides support for highlighting viewables and redrawing them in their normal
state when appropriate. Class Viewable defines the Highlighted attribute, but
you must create a subclass if you want your viewables to draw in a highlighted state.

You can use the Highlighted attribute to get and set a viewable’s highlighted state.
If you create your own viewable subclasses, you can use this attribute in your Draw
override to determine whether the viewable is highlighted.

A viewable can control whether or not subviews can be highlighted by overriding the
ContentsCanHighlight operation. A viewable can be notified if the highlight state
of any of its subviews change by overriding SetContentsHighlighted .

Viewable defines several operations that deal with viewable highlighting. Use
DrawAttentionTo to highlight and unhighlight a viewable several times. This
operations calls a lower level operation, BlinkHighlight to alternately highlight
and unhighlight a viewable. You can call BlinkHighlight if you want to control
the number of times a viewable is highlighted and unhighlighted, and the length of
time between highlighting and unhighlighting. The operation BlinkVisibility is
related to BlinkHighlight , except that instead of changing the highlight state of a
viewable, it will make the viewable alternately visible and invisible. Some Viewable
subclasses override DrawAttentionTo to call BlinkVisibility instead of
BlinkHighlight .

For more information on the visibility attribute of viewables, see "Visibility" on
page 80.

When the user slides a viewable object over certain viewables in Magic Cap, these
viewables will highlight themselves with a starburst effect to tell the user that the
sliding viewable can be dropped into the highlighted viewable. The starburst effect
is implemented by the mixin class StarburstHighlight . You can create Viewable
subclasses that inherit from this class to get the starburst highlight effect.
72 Package Development Guide Icras, Inc. Confidential

Touching Viewables Chapter 4 Viewables
Colors
Each viewable includes a main color and an alternate color. Viewable subclasses
decide how to use these two colors for each part of the viewable. The main color is
typically used to fill the viewable. The alternate color is often not used at all, or is
used if the viewable draws its parts in two different colors. The label’s color is
determined by the text style of the label, and the shadow’s color comes from the
shadow object.

Call PartColor to determine the color for a particular part of the viewable, or
SetPartColor to change the color of a part. If you create a viewable subclass with
additional parts, you can override PartColor and SetPartColor to handle the
colors for the new parts. When the user drops a color coupon on a viewable, the
coupon calls SetPartColor to change the viewable’s color.

Although current Magic Cap communicators do not have color displays, Magic Cap
supports true color. Magic Cap will use the values contained in the color and altColor
fields of viewables to colorize images. Because of this, you should make sure the color
and altColor fields of your viewables are not set up haphazardly for viewables that use
the Image attribute. For these viewables, it is common for the color field to contain
the value rgbBlack , and the altColor field to contain the value rgbWhite .

Touching Viewables
Magic Cap provides an elaborate system for converting user touches on the screen
into actions. This section describes in detail what happens when the user touches the
screen, the effects of the current tool on the touching process, and what happens
when the user slides and drops viewables. This section doesn’t cover lower-level
details of user touches.

Overriding Touching Operations
When the user touches the screen, Magic Cap calls Touching , Tap, Action , Press ,
Pressing , and Pressed at appropriate times during the touching process. You can
override these operations to perform an action at a particular time in the touching
process. The most commonly overridden operation is Action .

The Action operation is used to perform an object’s typical or usual function. For
example, the keyboard gadget at the bottom of the screen overrides Action to
display the onscreen keyboard. The overridden Action also checks the option key
to determine whether the advanced keyboard should appear. You can override
Action to make a viewable perform a particular function.

Action is often overridden by writing a Magic Script for a particular viewable.
When you create a Magic Script for an object, you effectively create a subclass of the
object with your script installed as an overridden implementation of the
corresponding operation of the class.
Icras, Inc. Confidential Package Development Guide 73

Chapter 4 Viewables Touching Viewables
You might override MovePress , CopyPress , or StretchPress if you want to
perform a special action when the user touches a viewable with the move, copy, or
stretch tool. See "Touching with the Arranging Tools" on page 77 for more
information.

Sliding and Dropping
When the user slides a viewable across the screen, Magic Cap calls DragTrack to
track the touch and handle all actions as the viewable slides.

As the user moves the viewable, DragTrack repeatedly determines which viewable
is immediately under it on the screen and checks to see if that underlying viewable,
called the target, is interested in the viewable that the user is sliding. When the user
finally releases the sliding viewable, one of three things happens to it, depending on
the target:

• The target becomes the sliding viewable’s container and installs it as a subview.
• The target swallows the sliding viewable, accepting the sliding viewable and

performing some action with it other than simply installing it as a subview. For
example, doors in the hallway swallow objects and place them inside their rooms.

• The target accepts the sliding viewable as a coupon and performs an action
indicated by the coupon.

As the user begins to slide the viewable, DragTrack calls HitTest to determine the
target, then calls Swallow on the target to ask if the target is interested in accepting
the sliding viewable and performing some action with it. If the target doesn’t want
to swallow, DragTrack calls CanAcceptCoupon on the target to ask if it will accept
the sliding viewable as a coupon. If the target refuses to accept the sliding viewable
as a coupon, DragTrack calls CanAccept to check whether the target will simply
accept the sliding viewable as a subview.

If the target won’t swallow the sliding viewable or accept it as a subview or coupon,
DragTrack asks the target’s superview about its interest, repeating recursively for the
superview when the sliding viewable is rejected. The screen, the ultimate object in
the onscreen view hierarchy, will accept any object as a subview.

This process of asking the prospective viewable about its interest in the sliding
viewable is used to provide user interface feedback during the sliding process. For
example, targets are usually drawn highlighted when they show an interest in
swallowing or accepting the sliding viewable, and DragTrack plays sounds to
indicate that the sliding viewable has been copied, has left its container, or has been
dropped into a new container.

Every time the user moves the sliding viewable, DragTrack calls HitTest again to
determine the target, then repeats the process of asking the target about its interest.
When the user releases the sliding viewable, DragTrack finishes the tracking process
by calling the sliding viewable’s Pressed operation. The action that takes place
depends on the interest expressed by the target.

If the target doesn’t want to swallow or accept the sliding viewable, it can express two
kinds of refusal, depending on the value it returns for Swallow or CanAccept .
Usually, a disinterested target returns kCantSwallow or kCantAccept . If the user
releases the sliding viewable at that point, it simply stays where it’s released and
74 Package Development Guide Icras, Inc. Confidential

Advanced Touching Information Chapter 4 Viewables
becomes a subview of the frontmost view that accepts subviews. Scenes always accept
subviews, so the viewable becomes a subview of the scene if all viewables in front of
the scene reject it.

If the user releases the touch and the target returns kSpitOut , the sliding viewable
hops back to its original position and DragTrack calls SpatOut to give the target a
chance to perform some action, such as posting an announcement. Depending on
the target’s preference, one of the following actions takes place:

• If the target indicated that it would swallow the sliding viewable, the sliding
viewable’s Pressed operation calls Swallow a second time on the target to allow
it to take control of the sliding viewable and perform some action on it. To
distinguish this call from the previous one which simply tests whether the target
will swallow, Magic Cap calls Swallow with its realSwallow parameter set to
true .

• If the target indicated that it would accept the sliding viewable as a coupon, the
coupon’s Pressed operation calls ApplyAndDiscardCoupon on the sliding
viewable to apply it to the target.

• If the target indicated that it would accept the sliding viewable as a subview,
DragTrack moves the sliding viewable to the target as a subview. DragTrack
calls CanChangeContainers to find out if the target can move to another
container, and SwitchContainer to move the target. You can override
CanChangeContainers and SwitchContainer to customize their behavior.

DragTrack and StretchTrack
When a touch has been classified as one that will allow the user to slide a viewable
across the screen, Magic Cap calls the viewable’s DragTrack operation. DragTrack
is large and complex, handling the many cases of moving viewables out of and into
containers, keeping track of various flags, determining whether containers can accept
objects, and much more.

You should never override DragTrack , except to perform some action before or after
calling the inherited implementation. Instead, you can customize its action by
overriding some of the many operations it calls. For example, you can override
CanChangeContainers to indicate whether the viewable can move to a new
container.

When the stretch tool is current and a touch has been classified as one which will
allow the user to slide a viewable across the screen, Magic Cap calls the viewable’s
StretchTrack operation. StretchTrack handles the details of resizing the
viewable as the user slides along the screen. You might override StretchTrack if
you want to change the way your viewables are resized.

Advanced Touching Information
This section provides advanced information about the touching process. Most
programmers won’t need all the detailed information in this section.
Icras, Inc. Confidential Package Development Guide 75

Chapter 4 Viewables Advanced Touching Information
Magic Cap maintains the current tool as a way to determine or modify what happens
when the user touches the screen. Many tools are visible to users, such as the pencils,
lines, shapes, move, copy, and stretch tools available by touching the tool holder at
the bottom of the screen. Other tools are invisible and not directly selectable by the
user. For example, when the user is going through a lesson from Magic Cap’s Getting
Started book, a special tool (iLessonTool) is used to ensure that the user touches
the right places on the screen. You can determine the current tool by reading
iCurrentTool .

Even if the user hasn’t chosen a tool, Magic Cap still has a current tool that takes
part in the touching process. This default tool is the touch tool, specified by
iTouchTool .

All tools inherit from class Tool . Tool defines the operation TouchTarget , which
is called when the user touches an object on screen. Tool also defines the operations
that determine whether a tool is used for touching, for drawing, or both. Tool is a
mixin class; you would never create an instance of Tool .

Setting up the Tool and Target
When the user touches the screen, Magic Cap determines which viewable has been
touched. This viewable is called the target of the touch. The tool, the target, and the
other viewables on the screen participate in deciding what action will take place in
response to the touch.

When the user touches the screen, Magic Cap creates a touch input object that
describes the touch. The touch input object calls the current tool’s GetToolTarget
operation to determine which viewable was touched and sets the target to be that
viewable. After setting the target, the tool’s GetToolTarget operation continues
and calls the target’s ConstrainToolTarget operation. This gives the target a
chance to perform any actions, including changing the tool or the target itself.

The tool calls ConstrainToolTarget for the target’s superview recursively; that is,
it calls ConstrainToolTarget for all of the target’s superviews up to and including
the screen object. If any viewable changes the tool, the tool stops calling
ConstrainToolTarget for that touch. If any viewable changes the target, the tool
calls ConstrainToolTarget for the new target and its superviews. This process
determines which tool and target will be used to handle the user touch.

When the tool calls ConstrainToolTarget , it passes a reference to the current tool.
You can override ConstrainToolTarget to make it change the tool, customizing
the behavior that occurs when the user touches your viewable. For example, class
Drawers overrides ConstrainToolTarget to change the tool to the touch tool
unless the user is holding down the option key. This allows touches on drawers in
the stamper to open a drawer no matter what the current tool is.

After the tool and target are determined, Magic Cap calls the tool’s TouchTarget
operation. This gives the tool a chance to influence the touch handling. Many
specialized tools handle the action of the user touch in their TouchTarget
operation. For example, pencils and all other drawing tools handle the drawing
process entirely in their TouchTarget operation.
76 Package Development Guide Icras, Inc. Confidential

Advanced Touching Information Chapter 4 Viewables
Touching with the Arranging Tools
The arranging tools - move, copy, stretch, and touch - do not perform their action
in TouchTarget . Instead, these tools call operations of the target: MoveTouch ,
CopyTouch , StretchTouch , and Touch , respectively. You can override these
operations to further control the touching process in your viewable subclass.

The most commonly used arranging tool is the touch tool, implemented by class
TouchTool . When the user touches a viewable with the touch tool, the tool’s
TouchTarget operation calls the viewable’s Touch operation to classify the touch as
either a tap or a press. This classification is based on whether the user moves the
touch a specified distance without releasing. Once the user has moved the specified
distance, 20 pixels by default, the touch is classified as a press. If the user releases the
touch without moving this distance, the touch is classified as a tap.

Note: The TapPressCriteria operation allows you to change the default distance
for classifying a touch from the default value of 20 pixels. TapPressCriteria also
allows you to classify a touch based on the length of time the user has touched the
viewable.

Touch calls the viewable’s TouchKind operation to classify the touch. TouchKind
returns immediately, without necessarily waiting long enough to classify the touch.
TouchKind returns one of the following symbolic constants:

• If the touch is classified as a tap, TouchKind returns tapKind .
• If the touch is classified as a press, TouchKind returns pressKind .
• If the touch hasn’t been classified yet, TouchKind returns dontKnow .

TouchKind returns dontKnow if the user is touching a viewable, but has not yet
moved it 20 pixels or released it. If TouchKind returns dontKnow , Touch calls
Touching to allow the viewable to take some action before the touch is classified,
then TouchKind , repeating these two calls until the touch is classified.

If the touch is classified as a tap, the Tap operation is called, which plays the
viewable’s sound and call its Action operation.

If the touch is classified as a press, the viewable calls the Press operation, which calls
Touching and Pressing repeatedly until the press is done, then calls Action, then
calls Pressed to indicate that the press is done. You can override Touching , Tap,
Action , Press , Pressing , and Pressed to customize your viewable subclass’s
behavior when the user touches with the touch tool and those operations are called.

Press calls AutoMove to determine if the viewable is one that the user can slide
across the screen without having to use the move tool. For example, class Stamp
overrides AutoMove to return true , allowing users to slide stamps without requiring
the move tool.

The move tool’s behavior is implemented by class MoveTool , and the copy tool’s
behavior is implemented by class CopyTool . When the user touches a viewable with
the move or copy tool, the tool’s TouchTarget operation calls the viewable’s
Icras, Inc. Confidential Package Development Guide 77

Chapter 4 Viewables Advanced Touching Information
MoveTouch or CopyTouch operations, respectively. Both MoveTouch and
CopyTouch call TouchKind to classify the touch. Unlike Touch , they don’t call
Touching repeatedly before the touch is classified.

If the touch is classified as a tap, both MoveTouch and CopyTouch call Touch , which
then calls Tap. If the touch is classified as a press, MoveTouch and CopyTouch call
MovePress and CopyPress respectively. Both MovePress and CopyPress call the
viewable’s DragTrack operation, which tracks the user’s touch across the screen,
moving or copying the viewable as appropriate. DragTrack makes sure that dirty
viewables are redrawn when necessary.

The stretch tool’s behavior is implemented by class StretchTool . When the user
touches a viewable with the stretch tool, the tool’s TouchTarget operation calls the
viewable’s StretchTouch operation. StretchTouch calls TouchKind to classify the
touch. Unlike Touch , it doesn’t call Touching repeatedly before the touch is
classified.

If the touch is classified as a tap, StretchTouch calls Touch , which then calls Tap.
If the touch is classified as a press, StretchTouch calls StretchPress .
StretchPress calls the viewable’s StretchTrack operation, which tracks the
user’s touch, stretching the viewable appropriately. StretchTrack makes sure that
dirty viewables are redrawn when necessary.

Touch Input Objects
When the user touches the screen, Magic Cap creates a touch input object that
describes the touch. As the touch is handled, the touch input object is passed to
many of the operations described above, including ConstrainToolTarget , Touch ,
Tap, and Press . The touch input object provides information about the touch,
including the touch’s starting and ending points and the status of the option key
when the touch was made.

You can call TapHere , OptionTapCenter and TapCenter to simulate touches.
These operations create touch input objects that cause Magic Cap to behave just as
if the user had tapped the given location. Call TapHere to simulate a tap at a
particular coordinate. Calling TapCenter simulates a tap at the center of a given
viewable. Call OptionTapCenter to simulate a tap at the center of a given viewable
with the option key held down.

Viewables as Tools
In addition to acting as targets, viewables can act as tools themselves. Although you
probably don’t think of viewables as tools, you can give a viewable the ability to act
as a tool so that it can make the ultimate decision about what happens when the user
touches it. The touch processing eventually calls the tool’s TouchTarget operation,
giving the tool final control. For example, information windows act as tools when
touched; they use this ability to close themselves when the user touches anywhere
inside them.
78 Package Development Guide Icras, Inc. Confidential

Miscellaneous Viewable Features Chapter 4 Viewables
To give your viewables the ability to act as tools, inherit from class Tool when you
create your viewable subclass. Then, override ConstrainToolTarget to change the
current tool to the viewable itself. This will give ultimate control to the viewable’s
own TouchTarget operation.

Hit Testing
When the user touches the screen, the touch input object uses a process called hit
testing to determine which viewable was touched. You can perform your own hit
testing to determine which viewable contains a given point. For example, phone
number labels on name cards use hit testing to determine what’s under the spot
where they are sliding in order to perform special processing when they pass over
certain underlying objects.

Given a point on the screen, you can call HitTest to determine which viewable
contains that point. Once you know which viewable contains the point, you can call
InsidePart to determine which part of the viewable contains the point. If the
viewable has an image, you can call InsideImage to test which part of the image
includes the given point.

Viewables define the following standard part codes that can be returned by
InsidePart :

#define partNothing 0 /* outside content */
#define partLabel (-2) /* in label */
#define partContent 1 /* inside content */

InsidePart calls CalcInsidePart to perform the work of determining which part
was touched. If you create your own viewable subclasses, you can override
CalcInsidePart and implement your own part codes to report which part of the
viewable contains the given point. For example, corridors such as the hallway can
return a part code indicating that the user touched the floor. The list above contains
the part codes defined by class Viewable . See Utilities.h for a complete list of part
codes returned by other Magic Cap viewables.

You should override CalcInsidePart to return your custom part codes where
appropriate. In your overridden CalcInsidePart , you can call various operations
of class Measurement for further hit testing. These operations include
BoxBoundsDot to determine if a given box contains a given dot and BoxBoundsBox
to see if one box is inside another.

Miscellaneous Viewable Features
This section describes some of the miscellaneous features provided for viewables.
Some features of viewables are defined in class Viewable , but not fully supported
except by subclasses. For example, although class Viewable defines attributes and
operations for working with images and borders, these features are dormant in
viewables unless activated by a subclass.
Icras, Inc. Confidential Package Development Guide 79

Chapter 4 Viewables Miscellaneous Viewable Features
Hopping
Magic Cap provides a set of operations that animate the movement of viewables on
the screen. This animated action, visible throughout Magic Cap’s user interface, is
called hopping. For example, when the user creates a new message, then taps send,
the message becomes a miniature card and hops to the out box; when the user
chooses a tool, the newly selected tool hops to the tool position at the bottom of the
screen.

You can call Hop to animate a viewable moving from its current position to a given
destination. If you have a destination that is another viewable, you can call
HopToViewable to animate the viewable move. If you want a viewable to travel to
the tote bag or to the trash, you can simply call HopToToteBag or HopToTrash .

For more control over the animation, call HopFancy , which lets you specify various
parameters of the animation, including the hopping speed and acceleration.

Borders and Shadows
Class HasBorder , a mixin, provides full support for shadows and borders. To make
a viewable subclass with shadows and borders, you should inherit from class
HasBorder . Borders themselves inherit from class Border .

The Shadow attribute gets and sets the viewable’s shadow. Even if the viewable has
no shadow, calling Shadow returns a shadow if the user is sliding the viewable on the
screen and it is being drawn with a shadow. The ShadowOffset attribute controls
the distance of the shadow from the viewable.

Images
Each viewable can be associated with an image object. Although class Viewable
provides attributes and operations for images, support for images is dormant unless
provided by a subclass. Viewables that have an image use it when they draw
themselves. Stamps draw simply by displaying their images, while buttons use their
images when drawing as part of a more complex drawing operation. You can use
images however you wish in any viewable subclass. There’s no special class or mixin
that you must inherit from.

If you want to provide images in your subclass of viewable, override the Image
attribute to get and set the image. When working with viewables that have images,
you can use the Image attribute to get or set the image associated with a viewable.
Call ImageBox to determine the box that should be used to draw the image. Given
a point inside an image, you can call InsideImage to determine which part of the
image contains the point.

Visibility
A viewable can be made invisible, removing it from the screen if it’s being displayed.
The viewable stays in the view hierarchy, but it isn’t drawn or hit tested. Use the
Visible attribute to get and set the viewable’s visibility. You can also call
ShowSubviews to make the viewable’s subview and its view chain visible. Making a
80 Package Development Guide Icras, Inc. Confidential

Miscellaneous Viewable Features Chapter 4 Viewables
viewable invisible does not remove it from a view hierarchy. It is possible for a
viewable to return true from OnScreen even while its Visible attribute returns
false .

Drawing Notification
Sometimes it is convenient to perform an action just as a viewable is about to be
drawn on the screen, or just before a viewable is removed from the screen. If you
create a viewable subclass with objects that should perform an action at these times,
you can override AboutToShow or AboutToHide . The appropriate operation will be
called when the viewable is being drawn or removed. For example, song stamps have
a flag that indicates whether they should play their songs whenever they are
displayed. To implement this, class SongStamp overrides AboutToShow to play the
song if the flag is set and overrides AboutToHide to stop the song if it is being played.

Text
Magic Cap provides features that support associating text with viewables. Every
viewable has at least one text item: its object name, which is shown in its label. The
label is drawn with its associated text style. You can use the TextStyle and
SetTextStyle operations to get or set the label’s text style. If you create a viewable
subclass that uses other text objects, you can override the TextStyle and
SetTextStyle operations to get and set the text styles of additional text objects.

Sound
Each viewable is associated with a sound object. When the user touches the viewable,
Magic Cap plays the sound. The Sound attribute lets you get or set the sound that a
viewable plays, and you can call PlaySound to play the viewable’s sound. If you want
to ensure that a sound is played, even if the viewable itself has no sound, you can call
PlaySoundWithDefault .

Selection
Many viewables contain multiple objects, any one of which can be selected by the
user for some action. For example, a choice box can include several different choices,
with one choice selected at any time. If you want to implement selection in your
viewable subclass, you can override the Selected attribute to return the selected
object. If your subclass includes text objects, you can override
SelectFirstTextField and SelectNextTextField , which control the selection
of text fields for typing. Your overridden versions of these operations determine the
order in which fields will be selected. If your viewable can scroll through a list of
selectable objects, you can call RevealSelection to make the currently selected
object visible within your viewable.

Searching
Magic Cap includes a find command in the Magic Lamp that searches viewables for
text or other viewables. Class Viewable defines the operations MatchText and
MatchImage which compares a viewable against the search criteria for equality.
Icras, Inc. Confidential Package Development Guide 81

Chapter 4 Viewables Miscellaneous Viewable Features
CanBeSearched , a class that mixes in with Viewable , defines the operation
SearchForObject which searches a viewable’s subviews for text or images. You can
perform searches programmatically by calling SearchForObject .
SearchForObject calls the operation MatchTextOrImage to compare the search
criteria against a given viewable. MatchTextOrImage will call either MatchText or
MatchImage depending on whether the search criteria is textual or graphical. You
can override MatchTextOrImage to search for other types of objects.

If you want your viewable subclass to be searchable, it should inherit from
CanBeSearched .

Periodic Work
If you create a viewable subclass, you can have Magic Cap call an operation in your
viewables at idle time, when no other actions are pending. When Magic Cap isn’t
performing any other actions, it calls the screen’s Idle operation, which in turn calls
Idle for all its subviews; that is, all viewables in the screen view hierarchy. If you
want objects of your viewable subclass to perform some periodic action, you can
override Idle . For example, clocks override Idle to update their display at idle time.

An idle method should return the minimum amount of time that should pass before
being called again. This amount of time is typically the shorter of the minimum
amount of time your Idle override wants between invocations and the minimum
amount of time inherited Idle methods want between invocations. Idle overrides
most commonly end like this:

Method ulong
MySubclass_Idle(Reference self)
{

// Do stuff at idle time here
...

// Return the smaller of the minimum amount of time superclasses
// want between idles and the minimum amount of time this class
// wants between calls to Idle.
return SoonerIdle(InheritedIdle(self), myMinimumIdleTime);

}

The SoonerIdle operation simply returns the smaller of two unsigned values.

Scribbling and Typing
Each viewable can control whether the user is allowed to use drawing tools, such as
pencils, inside it. If you create a viewable subclass, you can override the CanDrawIn
attribute to explicitly prohibit or allow drawing inside the viewables, or to ask the
superview to make the decision. For example, stamps override CanDrawIn to
prohibit drawing inside them.

Extending
When the user creates a telecard or note card, the card can be extended by adding
space at the bottom. If your viewable subclass defines objects that could be extended
by adding space at the bottom, you can override operation CanExtendBottom to
indicate that your viewables can be extended.
82 Package Development Guide Icras, Inc. Confidential

Miscellaneous Viewable Features Chapter 4 Viewables
Viewables are extended when the ExtendBottomBy operation is called. This
operation increases the space at the bottom of a viewable and all of its subviews. To
extend the bottom a viewable without affecting its subviews, call
ExtendBottomShallowBy . To extend the bottom of a viewable’s subviews without
affecting the viewable, call ExtendBottomDeepBy .

Disabling
You can use the Disabled attribute to make the viewable unable to accept touches,
and therefore unable to be highlighted. If you create your own viewable subclasses,
you can use this attribute in your Draw override to determine exactly how to draw
the viewable. Disabling objects is dormant in viewables. The Disabled attribute
gets and changes the disabled setting, but it has no effect on how viewables behave
unless supported by a subclass. For example, buttons that set their disabled attribute
to true can’t be touched and don’t draw their images.

Orientation
Each viewable includes an orientation setting that allows it to be drawn in a rotated
position. The viewable can be drawn rotated at 90 degree positions, and each rotated
image can be flipped horizontally or vertically, providing 16 different images.
However, no more than 8 of these orientations will appear distinct. For example, a
viewable that has been flipped vertically and rotated left 90 degrees appears the same
as a viewable flipped horizontally and rotated right 90 degrees.

Figure 13 Viewables in various orientations

More symmetrical viewables have even fewer distinct images. A viewable with left
and right sides that are mirror images, such as a star shape drawn with Magic Cap’s
shape tools, has only four distinct images.

You can use the Orientation attribute to get or set a viewable’s orientation.
Orientation is dormant in viewables. It is supported in animations, controls, and
shapes. You can implement orientation in any viewable subclass by overriding the
Orientation attribute. If you implement orientation, you should also use the
orientation value when drawing your viewable. If your viewable uses an image to
display itself and your subclass calls DrawShadowedImage , the orientation will be
applied to the viewable when it is drawn.
Icras, Inc. Confidential Package Development Guide 83

Chapter 4 Viewables Miscellaneous Viewable Features
Stamps, Buttons, and Controls
Magic Cap provides a large collection of stamps, viewable objects that users add to
cards and other objects.

Figure 14 Stamps

Members of class Stamp are used as decorations, placed by users on telecards, name
cards, notebook pages, and in other places. In addition, Magic Cap packages use
stamps to provide graphical meaning in the user interface. Some stamps have
additional functions. For example, song stamps play a digitized song when touched
and sound stamps record sound from the communicator’s microphone. Sticky notes
are stamps that zoom open into small windows and contain other viewables.

Some stamps have a semantic meaning that affects the behavior of Magic Cap
features. For example, users can set rules in the in box to handle specially any
incoming telecards that have the urgent, confidential, or low priority stamps.

Even if your package defines no stamps of its own, you will likely include some
stamps as subviews of your scenes and windows.

Stamps are designed mainly as graphic adornments that users can add to telecards,
notebook pages, and other places. You’ll rarely call any operations of stamps. Instead,
you’ll include stamps as subviews in some of your own viewables. If your package
provides original stamps for users, you might install the stamps in the stamper. For
information on installing stamps that appear in the stamper when your scene is
current, see the Scenes chapter of this book.

Note: You can use Magic Cap simulator to create a stamp from any Macintosh
graphic image. With Magic Cap running, select the image you want on the
Macintosh, choose Copy from the Edit menu, select the Magic Cap window, and
choose Paste from the Edit menu. For more information, see "Guide to Magic Cap
Development Tools".

Stamps can be set to perform some action when the user touches them, although this
feature is rarely used for stamps. Instead, Magic Cap defines class Button , a subclass
of stamp, for objects that take some immediate action when the user touches them.

Figure 15 Buttons
84 Package Development Guide Icras, Inc. Confidential

Miscellaneous Viewable Features Chapter 4 Viewables
When the user touches a button, it highlights to enter a momentary-on state that
indicates to the user that it is being touched. When the touch is released, the button
returns to its usual display and the button’s Action operation is called. Magic Cap
provides various subclasses of button that implement buttons with specialized
behavior.

In addition to buttons, Magic Cap defines other subclasses of stamps that are
designed to perform some immediate action when the user touches, including classes
Gadget and Icon . Each gadget is connected to some other viewable, usually a gadget
window. When the user touches a gadget, the associated viewable is shown or
hidden. Similarly, each icon is connected to another viewable, usually a scene. When
the user touches an icon, the user goes to the associated scene.

After the user releases the button and it returns to its usual display, it doesn’t retain
any setting indicating that it was pressed. Magic Cap defines controls as viewables
that allow users to interactively manipulate some setting, displaying information
about the setting as users touch.

Figure 16 Controls

Magic Cap provides various kinds of controls, including switches, meters, sliders,
and choice boxes. All controls display their setting and allow users to touch them to
change the setting. For more information about buttons and controls, see the
Buttons and Controls chapter of this book.
Icras, Inc. Confidential Package Development Guide 85

Chapter 4 Viewables Miscellaneous Viewable Features
86 Package Development Guide Icras, Inc. Confidential

5
Scenes

This chapter describes scenes, viewable objects that contain virtually all the other
viewables in the space between the name bar at the top of the screen and the control
bar at the bottom of the screen. If your package displays its viewables, it will probably
contain at least one scene.

Figure 17 Examples of Magic Cap scenes. Scenes are between top and
bottom bars

A scene provides the setting for the viewables you put on the screen. If your package
presents more than one setting filled with viewables, you may want to include
multiple scenes. For example, the notebook includes two scenes: one scene is used
when displaying a page in the notebook, and another is used when showing the
notebook index. As the user switches from one notebook page to another, the
notebook simply installs different pages in the notebook scene.

Scenes specify a collection of viewables that you want your package to display on the
screen all at once. You probably won’t ever have to make a scene at runtime. Instead,
you’ll specify your scenes and their contents when you build your package.
Icras, Inc. Confidential Package Development Guide 87

Chapter 5 Scenes Navigation
When Magic Cap opens windows on the screen, the windows are not installed as
subviews in the scene. Instead, windows are always subviews of the screen object.
This allows windows to “float” above viewables in the scene, making windows always
appear in front of the scene.

Navigation features provided by scenes allow users to look through the information
in a scene and to move from one scene to another. You can create scenes that display
an unchanging set of viewables, or a variety of different settings depending on user
actions.

Scenes can add custom items to various system locations, such as the Magic Lamp,
tools window, and stamper. Scenes can also customize the options that appear when
the user touches one of the system-provided commands in the Magic Lamp, such as
mail or fax.

Each scene has flags that you can use to set up specialized behavior. Magic Cap
defines various indexicals for built-in scenes and other important scene-related
objects, and several fields in the package contents object provide scene-related
features.

Navigation
As users work with Magic Cap, they use navigation to move from one scene to
another. Magic Cap’s user interface provides various techniques for navigation. The
name of a step-back scene appears in the upper-right corner of the screen next to the
picture of a pointing hand. The user can touch there to go to the step-back scene.

Figure 18 The hand points to the name of the step-back scene

When the user moves to a new scene, the new scene determines what its step-back
scene should be. Often, the user moves to a new scene by logically “zooming in” for
a closer, more detailed view. In cases like this, the new scene sets the “zoomed out”
scene as the step-back scene. For example, the datebook sets the desk as its step-back
scene because the datebook is a zoomed-in, detailed view of an item on the desk.
Similarly, the desk sets the hallway as its step-back scene, because the desk is a
zoomed-in, detailed view of an item in the hallway.

In other cases, the step-back scene is simply the previous scene. For example, the user
can option-touch the Magic Lamp to move directly to the controls in the hallway.
In this case, the previous scene becomes the step-back scene. In some cases, the step-
back scene is chosen by other criteria. The downtown scene has no enclosing scene,
so its step-back scene is arbitrarily chosen to be the hallway.

Some scenes have step-back scenes that never change. For example, the desk always
has the hallway as its step-back scene, and the hallway always has downtown as its
step-back scene. Such scenes are called places. You can call IsPlace to determine if
a scene is a place.
88 Package Development Guide Icras, Inc. Confidential

Navigation Chapter 5 Scenes
Some scenes will never be the step-back scene after the user leaves. For example, the
step-back scene for the in box scene is the scene the user came from to get to the in
box. However, if the user came from the message scene, the in box scene’s step-back
scene will be the desk. A scene can specify that it should never be the step-back scene
by setting the ephemeral field to true.

Scenes have a StepBackScene attribute that determines the scene that appears next
to the pointing hand. If your package’s scene isn’t a place and the user goes to your
scene, Magic Cap sets the step-back scene to the scene the user came from. If your
scene is a place, Magic Cap leaves the step-back scene unchanged when the user goes
to your scene. You can use the StepBackScene attribute to get and set this value.

If the user steps back, Magic Cap calls the scene’s StepBack operation, which moves
to the step-back scene. If the scene’s StepBackSpot attribute isn’t nilObject , a
zooming-out effect is drawn focused on the StepBackSpot .

Every scene displays its name in the upper-left corner of the screen. You can override
the scene’s PlaceName operation if you want the name displayed in the upper-left
corner of the screen to be something other than simply the name of the scene. For
example, class CardScene overrides PlaceName to display the name of the card if
the useCardName field is true .

As the user moves from scene to scene, Magic Cap keeps track of the scenes visited
most recently. If the user option-taps the name of the step-back scene, a list of these
scenes appears. The user can then touch a name to go directly to a scene on the list.

Figure 19 The list of recently visited scenes

Scenes can control whether or not they show up in this list by setting the
addToHistory field. If this field is set to false , a scene will not be added to this list
after the user leaves the scene. Note that ephemeral scenes still appear in this list.

When the user moves to a new scene, Magic Cap provides an animated visual effect
that suggests zooming in to a closer view or zooming out to a wider view if that effect
is appropriate. For example, when the user touches the phone on the desk, a
zooming-in effect suggests that the phone is filling the screen. If the user steps back
to the desk, a zooming-out effect suggests the phone scene shrinking to fit back on
the desk as the user’s attention widens to the entire desk.

You can go to any scene by calling GoTo. If you want the new scene to remember
where the user came from before moving, call GoToVia . The new scene’s step back
spot will be set to the viewable you pass when calling GoToVia . You can override
Icras, Inc. Confidential Package Development Guide 89

Chapter 5 Scenes Information Windows
GoTo and GoToVia to customize their behavior. These operations are called
whenever the user moves from your scene to another, so you can override them to
perform some custom behavior whenever the user leaves your scene.

Information Windows
Every scene can have an associated window that provides helpful information about
how to work the scene’s features. If the scene has an information window, Magic
Cap draws a circled question mark at the left edge of the screen’s name bar. The user
can touch there to display the information window.

Scenes specify their information windows by listing them in the package contents
object. For more information on items in the package contents object, see the
Specifying a Package Content Object in the Software Packages chapter of this book.

Titled windows can have their own information windows.

Current Scene
The current scene is the scene being displayed on the screen. The current scene
contains all the other viewables between the top and bottom bars, except windows.
You can determine the current scene by reading the iCurrentScene indexical.
When a scene becomes current, Magic Cap sets iCurrentScene to the new scene,
then calls the scene’s OpenScene operation. You can override OpenScene to have
your scene perform some action when it becomes current. Similarly, you can
override CloseScene to perform some special action when your scene is no longer
current.

When the communicator is about to shut off, Magic Cap calls the current scene’s
ShutdownScene operation. You can override ShutdownScene to perform some
action before power is shut off. However, if your scene isn’t current, or an
unexpected power loss occurs, your scene’s ShutdownScene operation won’t be
called.

Cards, Stacks, and Forms
Some scenes, such as the controls scene, display a fixed set of viewables. However,
many scenes vary their display depending on the user’s actions. One of the most
common ways to organize these variable displays within a scene is by containing
viewables in cards, viewables which fill most of the scene’s screen area. For example,
each page in the notebook is a card. When the user looks at a page in the notebook,
the card that represents that page becomes a subview of the notebook scene.

Often, many cards in a scene share some information. Magic Cap uses forms for the
information that can be shared among cards. In some scenes, all the cards are
collected together into a list called a stack of cards, also called a stack. For example,
the notebook has one form for each of its stationery types, and all the cards in the
90 Package Development Guide Icras, Inc. Confidential

Scene Additions Chapter 5 Scenes
notebook are part of a single stack of cards. Most scenes that display a stack of cards
are members of class StackScene , a subclass of Scene . See the Cards, Stacks, and
Forms chapter of this book for more information on this subject.

If you’re using a stack scene, you can get the card being displayed by calling
CurrentCard or by reading iCurrentCard . You can get the scene’s stack by calling
Stack .

If you’re using a stack scene, you can call various operations to display cards in the
stack. You can display any card by calling SetCurrentCard . If the card isn’t already
in the stack, SetCurrentCard adds it. You can also call GoToNext or
GoToPrevious to display the next or previous card in the stack, or GoRelative to
move a specified number of cards forward or backward in the stack.

Class Scene defines CurrentCard , Stack , GoToNext , GoToPrevious , and
GoRelative , but their implementations are empty, left to be defined by subclasses
like StackScene . You can also create your own subclass of Scene that implements
these operations however you wish. For example, you might create a subclass of
Scene that uses something other than cards to contain its viewables. Such a subclass
could use GoToNext , GoToPrevious , and GoRelative to move through the scene
in the same way that stack scenes move from one card to another. For example, class
DatebookScene overrides GoRelative to move through days, months, and years.

Scene Additions
When a scene becomes current, it can install its own commands, rules, and other
objects in various system locations. These objects are called scene additions. Magic
Cap provides support for the following kinds of scene additions:

Magic Cap contains examples of all these kinds of additions. Many scenes add
commands, such as the back up command added by the storeroom scene. Many
scenes add rules. For example, the in box scene adds a rule that allows the user to
periodically collect electronic mail. Various built-in scenes, including the notebook,
provide an example of added tools: they install the arranging tools. The datebook
demonstrates adding a drawer of stamps: its stamps provide images for common
kinds of appointments. The name cards scene add an entire bank of drawers, five
drawers that provide labels for addresses and phone numbers.

kind of addition where installed

commands (usually
buttons)

commands area in Magic Lamp

rules rules window in Magic Lamp

tools tools window

stamps (one drawer) bottom drawer of stamper

banks of drawers of
stamps

stamper
Icras, Inc. Confidential Package Development Guide 91

Chapter 5 Scenes Scene Additions
Command Additions
A scene can choose to add different commands, rules, and tools depending on
whether construction mode is on. For example, the desk scene adds the tidy up
command only if construction mode is on.

To specify scene additions, include an object of class SceneAdditions in your
instance definition file and set the scene object’s sceneAdditions field to refer to it. If
your scene has no additions, just set this field to nilObject .

The fields of the scene additions object specify the items to be added when the scene
is current; if any of its fields are not nilObject , Magic Cap will automatically install
the scene’s additions when the scene becomes current.

You can also add additions to scenes outside your package by creating an install
specifier with the addition as the object to be installed and the scene as the receiver.
Magic Cap automatically installs the addition into the right place in that scene.
Magic Cap has a subclass of InstallSpecifier specifically for providing more
control over how scene additions are installed, PerSceneInstallSpecifier . A per
scene install specifier allows you to specify whether a scene addition should be
installed only when construction mode is on. You can also specify the position in a
stack a card should be installed with a per scene install specifier. For more
information about install specifiers, see the How Packages Install Objects section of
the Software Packages chapter of this book.

The commands field of the scene additions object refers to an object list with two
items. These items are object lists themselves: the first object list contains the
viewables that should be displayed in the commands area if construction mode is off,
and the second has the viewables to be displayed if construction mode is on. This
relationship is shown in the following diagram:

Figure 20 Command additions for a scene

When a scene adds viewables to the commands area of the Magic Lamp, Magic Cap
automatically lays out the viewables in the window. The location of the viewables
specified by their relative origins is ignored.
92 Package Development Guide Icras, Inc. Confidential

Scene Additions Chapter 5 Scenes
Rules Additions
In the same way, the rules field of the scene additions object refers to an object list
with two items. These items are objects lists themselves: the first contains the rules
to be displayed with construction mode off, and the second lists the rules to be
shown with construction mode on.

Often, you’ll want the same commands and rules to appear regardless of whether
construction mode is turned on. If you do this, you don’t have to declare two
identical object lists of commands or rules. Simply set both entries of the main object
list to refer to the same list of commands or rules.

Tools Additions
As with commands and rules, the tools field contains an object list with two items,
one to be used with construction mode off and the other when construction mode
is on. However, these object lists don’t contain object lists themselves. Instead, they
contain a single viewable object that will be installed in the tool window when the
scene is current. To have your tools accompany a scene, declare a box that contains
your tools as subviews, then make the tools object list refer to that box. This
relationship is shown in the following diagram.

Figure 21 Tool additions for a scene

When a scene adds tool buttons in a box, Magic Cap installs the box as a subview in
the tools window just as its relative origin specifies in the instance definition file. The
tool buttons themselves inside the box also appear according to their relative origins.
Magic Cap doesn’t attempt any automatic layout.

As with commands and rules, you may want the same tools to appear regardless of
whether construction mode is turned on. If you do this, you don’t have to declare
two identical boxes and tool buttons. Simply set both entries of the main object list
to refer to the same box containing tool buttons.

Stamp Additions
Your scene can add specialized stamps to Magic Cap in either or both of these ways:
Icras, Inc. Confidential Package Development Guide 93

Chapter 5 Scenes Scene Additions
• Your scene can put any number of its own stamps into the bottom drawer of the
stamper’s main bank of drawers.

• Your scene can add one entire bank of drawers filled with stamps.

If your scene adds its own stamps, the scene additions object’s stamps field refers to
a object list of objects in a view chain. The name of the drawer is set to the name of
the scene object. Unlike commands, rules, and tools, there’s no way to vary the
selection of stamps according to the construction mode setting.

The relationship among the pertinent objects is shown in the following diagram:

Figure 22 Stamp additions for a scene

If the scene adds its own bank of drawers, the scene addition object’s
stampBankNames field refers to a text object that contains the names of the added
drawers, separated by the carriage return character (ASCII 0x0D). The number of
drawers is determined by the number of names in the text object. Because of the
limited area on the screen for the stamp drawers, you should have no more than 5
drawers in your bank.

To specify a carriage return character in your instance definition files, you can use a
backslash followed by n. For example, the object compiler translates the following
string in an instance definition file to the ASCII strings one and two, separated by a
carriage return:

'one\ntwo'

The entire expression is enclosed in single quotation marks, which is the object
compilers’s standard syntax for ASCII text.

The scene addition object’s stampBankContents field refers to an object list. This
object list contains one entry for each drawer in the bank. Each entry in this object
list refers to another object list that lists the view chain of objects that will appear in
a drawer. The name of the bank of stamps is set to the name of the object list. Unlike
94 Package Development Guide Icras, Inc. Confidential

Scene Additions Chapter 5 Scenes
commands, rules, and tools, there’s no way to vary the selection of stamps according
to the construction mode setting. The relationship among these objects is shown in
the following diagram:

Figure 23 Stamp bank addition for a scene

When a scene adds its own stamps, Magic Cap installs the stamps as subviews in the
drawer at the positions specified by their relative origins in the instance definition
file. Magic Cap doesn’t attempt any automatic layout of the stamps.

When you declare a scene in your instance definition files, you can use the scene’s
sceneDrawer and sceneDrawerBank fields to indicate which drawer should open when
the user first opens the stamper while in your scene. You can specify the general
drawer of the main bank by setting sceneDrawer to false , the bottom (custom)
drawer of the main bank by setting sceneDrawer to true , or the top drawer of the
scene’s custom bank by setting sceneDrawerBank to true .

Class Scene defines attributes for Additions , Commands, Rules , Tools ,
LocalStamps , StampBankNames, and StampBankContents . However, you’ll
probably never use any of these directly. By specifying your scene additions in the
instance definition file, Magic Cap will install and remove them automatically.

Many scenes, especially stack scenes, display a column of five buttons along the right
side of the screen, between the top and bottom bars. Although many scenes have
these buttons, Magic Cap doesn’t provide any explicit support for this feature in its
scene classes. Instead, scenes simply declare these buttons as subviews in instance
definition files. For more information about setting up buttons like this, see the
Stacks and Stack Scenes section of this book’s Cards, Stacks, and Forms chapter.
Icras, Inc. Confidential Package Development Guide 95

Chapter 5 Scenes Sending, Imaging, and Filing Scene Contents
Sending, Imaging, and Filing Scene Contents
The Magic Lamp includes buttons, available in every scene, that let the user perform
various sending, imaging, and filing operations on the scene’s contents. Specifically,
the following buttons are available in the Magic Lamp:

When the user touches one of these buttons, Magic Cap displays a window that
includes a choice box listing the sets of objects that can be used when performing the
command. This choice box is sometimes called the “what” box because it lists what
can be sent, imaged, or filed.

The choices offered depend on the current scene. For example, touching print may
offer the choice of printing the screen, the current card, or all the cards in the current
scene. The following figure shows the File window and its choices when the user
touches the file button while looking at the DataRover name card.

Figure 24 Choices for what to file

Content Proxies
Magic Cap supports these command buttons by using content proxies, place holder
objects that refer to the objects being sent, imaged, or filed. When the user touches
one of the buttons listed above, Magic Cap asks the current scene for a list of the sets
of objects that should be presented in the choice box. Each choice is represented by
a content proxy. For example, the preceding figure shows two content proxies, one

command button function

file put objects or copies into a package or file cabinet

print print objects to attached printer or via linked computer

mail put objects on a new telecard

fax send images of objects via fax

beam send objects via infrared beam to another Magic Cap
communicator
96 Package Development Guide Icras, Inc. Confidential

Sending, Imaging, and Filing Scene Contents Chapter 5 Scenes
for the current name card and one for all the cards in the name card file. Magic Cap
uses the content proxy to get the necessary information for performing the
command.

When the user touches one of the command buttons, Magic Cap calls the scene’s
MakeContentProxyChoices operation to ask what sets of objects to list in the
“what” choice box. Your scene can control what appears in the “what” box by
overriding MakeContentProxyChoices . Magic Cap passes a parameter to
MakeContentProxyChoices that indicates which button the user touched. This
allows MakeContentProxyChoices to vary its response according to the action the
user is performing.

When Magic Cap calls MakeContentProxyChoices , it passes as a parameter the list
object that contains the “what” choices. To add to the choices, your scene should call
NewContentProxy for each new choice, then call ObjectList_AddLast to add the
new content proxy to the list. The calls to NewContentProxy and AddLast are
typically combined in a single line, as in the following example:

AddLast(list, NewContentProxy(self, nilObject, 1, CurrentCard(self),
iPrintImage, nil));

The parameters to NewContentProxy provide the following information:

• the number of items in the newly added choice (for example, a single choice may
include all the cards in a stack)

• the object that will be used to perform the command
• the image and text used to describe the choice.

NewContentProxy creates new content proxies based on a template object returned
by the scene’s PrototypeContentProxy attribute. Class Scene returns
iPrototypeContentProxy . Override this attribute to return a different template
proxy object.

For the imaging commands (print and fax), the object for which you create a proxy
should be a viewable that contains all the objects to be imaged. To perform the
command, Magic Cap will first make the connection to the printer or fax machine,
then call Viewable_Draw for the container and all its contents.

For the sending commands (mail and beam), the object for which you create a proxy
should be a member of class Card or an object list of cards. To perform the
command, Magic Cap creates a new, blank telecard, then places a copy of the objects
to be sent on the telecard, using an image supplied by the content proxy. Typically,
all the objects will be on the current card, so you can call NewContentProxy to make
a proxy for the current card, as in the example above. Magic Cap sends a copy of the
original object, along with copies of objects that it refers to in its fields, except objects
declared as noSend in the class’s definition.

You can also send objects that aren’t contained on cards, although you must do
considerably more work. When Magic Cap prepares to send, it calls the content
proxy’s MailOnTelecard operation to create the telecard. MailOnTelecard in turn
calls the CreateContainer operation of the object to be sent. CreateContainer
copies the objects and places them on the telecard. To send objects that aren’t cards,
Icras, Inc. Confidential Package Development Guide 97

Chapter 5 Scenes Scene Information in the Package Contents Object
you should create a subclass of ContentProxy and override MailOnTelecard and
CreateContainer . For example, the datebook uses this approach in order to send
tasks with the mail and beam commands.

For filing, the object for which you create a proxy must be a member of class
CanBeFiled or an object list of such objects. When the object is filed with the file
the original button, Magic Cap files the object along with objects that it refers to in
its fields, except objects declared as noSend in the class’s definition.

When the object is filed with the file a copy button, Magic Cap files a copy of the
original object, along with copies of objects that it refers to in its fields, except objects
declared as noCopy in the class’s definition.

Scene Information in the Package Contents Object
The package contents object includes several fields related to scenes. The
sceneIndexicalsList field of the software package is an object list that specifies
indexicals that refer to all scenes in the package. Magic Cap will look for rule
additions in these scenes and add them to the rules book in the library. The
helpOnObjects field lists the scenes and windows in the package that have
information windows and their corresponding information. The creditsScene field
specifies a scene that shows author and publisher credits for the package. The user
can see this scene by touching the credits button in the package storeroom scene in
the storeroom. The startupScene field specifies the scene that Magic Cap goes to
when the user taps the go to button in the package storeroom scene.

The installation list lets you create a way for the user to get to scenes in your package,
such as a door in the hallway. To do this, include scenes and their corresponding
locations in the installation list. For complete information on items in the package
contents object, see the Software Packages chapter of this book.

Subclasses of Scene
Magic Cap provides various scene subclasses that you can use in your packages. The
most important is class StackScene , the subclass used for displaying a stack of cards,
such as the name cards. Magic Cap provides another scene subclass, CardScene ,
which is used to display a single card that is not part of a stack. Another useful
subclass is IndexScene , which inherits from class HasContentList . Objects of this
class are scenes that can show individual list elements or can show an index (a
content list view) that summarizes all the elements in the list.

Class ModalScene is used for scenes that contain several screens of information, like
stacks, but have little in common among the screens. Magic Cap’s phone is an
example of a modal scene. The various modes of a modal scene are usually
implemented by having a card for each mode.

Several of the built-in packages in Magic Cap use scene subclasses to display
information. The name card file uses the NameCardsScene subclass to display its
cards. The datebook uses the DatebookScene subclass to display its tasks and
appointments.
98 Package Development Guide Icras, Inc. Confidential

Scene Flags and Indexicals Chapter 5 Scenes
Scene Flags and Indexicals
Class Scene defines various flags that you can use to customize the appearance and
behavior of its members. You’ll use these flags primarily when you declare scenes in
instance definition files.

Scene flags enable various features, including customizing the display at the top of
the screen when your scene is current, instructing the find command to skip your
scene when the user searches for something, and preventing the time and date from
appearing in the name bar. There are other scene flags that provide more
customization.

Magic Cap keeps track of the current drawing tool, the tool most recently used to
draw or write. Scenes that often use drawing tools, such as the messages scene and
the notebook scene, can set a flag that causes Magic Cap to choose the current
drawing tool whenever the scene becomes current. You can call DefaultTool to
determine the tool, if any, that will be set when the scene becomes current. You can
also check iLastDrawingTool to determine the current drawing tool.

Magic Cap provides indexicals that contain useful scenes or information about
scenes. Indexical iSceneIndexicalList is a list containing many of Magic Cap’s
built-in scenes, such as the desk, hallway, downtown, name cards, datebook, and so
on. You can use the GoTo operation and an indexical from iSceneIndexicalList
to take the user to a well-known scene.
Icras, Inc. Confidential Package Development Guide 99

Chapter 5 Scenes Scene Flags and Indexicals
100 Package Development Guide Icras, Inc. Confidential

6
Cards, Stacks, and Forms

This chapter discusses cards, viewables that conveniently collect and display other
viewables in scenes. This chapter also discusses lists of cards called stacks, and forms,
viewables that provide a means for sharing information among related cards.

Before reading this chapter, you should already be familiar with the concepts
presented in the Viewables and Scenes chapters of this book. You should also be able
to create simple packages with the Magic Cap development environment. For
complete information on developing for Magic Cap, see "Guide to Magic Cap
Development Tools".
Icras, Inc. Confidential Package Development Guide 101

Chapter 6 Cards, Stacks, and Forms About Cards, Stacks, and Forms
About Cards, Stacks, and Forms
Many package scenes collect their data into units of related information, with each
unit containing roughly one screen of data. Magic Cap provides cards as a way to
organize these units of information that fill most of a scene’s screen area. For
example, each page in the notebook is a card, as is each name card in the name card
file.

Figure 25 Various cards in their scenes

Some scenes contain only a single card, such as the message scene that is used when
creating a new telecard. Scenes that contain multiple cards usually collect the cards
together into a list called a stack of cards, also called a stack. Scenes that display
stacks of cards are stack scenes. For example, the notebook and the name card file
both collect their cards into stacks and display them using stack scenes.

Often, a group of cards in a stack shares some information or a common basic
appearance. Magic Cap uses forms to represent this shared information or common
appearance. Forms are viewables that contain the information shared by the group
of cards. For example, all name cards in the name card file share a form, and all index
cards in the name card file share a different form. The notebook uses several forms:
one for plain paper, one for lined paper, one for graph paper, and one for list paper.

Each form includes items shared by all its cards. For example, in the name card file,
the form for name cards includes boxes that contain addresses and telephone
numbers and a viewable object used by group name cards to list their members. The
form for index cards simply provides the visual background for those cards and
contains no shared objects.

Similarly, the notebook forms provide shared objects and background appearance
for notebook pages. The forms for plain paper and for lined paper include two text
fields, one for the title of the page and one for the page’s body text. The form for
graph paper includes a text field for the page’s title and a ruling object that draws the
grid on the page. All the different notebook forms provide the spiral notebook
background.
102 Package Development Guide Icras, Inc. Confidential

About Cards, Stacks, and Forms Chapter 6 Cards, Stacks, and Forms
Each form includes a list of form items, the objects that are shared among all the
cards that use the form, such as the two text fields provided by the plain paper form
in the notebook. Although the text fields themselves are shared, the data that
provides the objects’ content (that is, the text objects themselves) are not shared -
each card has different text in these objects.

To accommodate having different data for shared objects on each card, each card
keeps track of the data that it places into the form items. When the card becomes
current, it installs its own data into the form items. When the card is no longer
current, it removes its data from the form items and stores the data in its extra data.
For example, when a new plain paper notebook page becomes current, it installs its
title and body text into the text fields provided by the form.

The following figure shows an example of a card in a stack (a notebook page) and
indicates which parts are provided by which objects.

Figure 26 Card in its stack
Icras, Inc. Confidential Package Development Guide 103

Chapter 6 Cards, Stacks, and Forms About Cards, Stacks, and Forms
When Magic Cap shows a scene with its stack, card, and form, the following view
hierarchy is created (indented lines indicate subviews):

Screen
Scene

Card
Form

(items on the form, such as text fields)
(items on the card, such as stamps added by user)

(items in the scene, such as buttons at right)
Name Bar

(items in the name bar, such as the carousel)
Control Bar

(items on control bar: desk button, stamper, and so on)

You can use the card’s Stack and Form attributes to get and set its stack and form.
However, you’ll usually indicate the card’s stack and form when you declare the card
in your instance definition file. You probably won’t change these attributes directly
at runtime.

You can create scenes that display a single card or a collection of cards. Many stacks
of cards allow users to add new cards or remove existing cards. Stack scenes and cards
provide navigation features that allow users to look through information and move
from one card to another.

You may want to provide a way for users to work with cards that aren’t on the screen.
You can create tiny stand-ins for cards called minicards to represent cards that aren’t
being displayed.

When you display cards in a stack scene, you can control various settings of the stack,
such as what happens when you add new cards, how to move cards to another stack,
and how to remove existing cards entirely.

The following diagram illustrates the relationships among cards, stacks, forms, and
stack scenes.

Figure 27 References among cards, stacks, forms, and stack scenes
104 Package Development Guide Icras, Inc. Confidential

Navigation and Scenes Chapter 6 Cards, Stacks, and Forms
In addition to cards, stacks, and forms, this chapter also discusses classes
StackScene , FormElement , and MiniCard .

Navigation and Scenes
As with scenes, you can go directly to cards. Call GoTo to open any card in its scene.
To record the spot on the screen where the user touched to go to the new card, call
GoToVia . The new scene’s step-back spot will be set to the viewable you pass when
calling GoToVia . You can also call GoToNext or GoToPrevious to display the next
or previous card in the stack, or GoRelative to move a specified number of cards
forward or backward in the stack.

Every card has a default scene, the scene that will be used to display the card when
opened outside its usual scene. For example, if an unsent telecard is on the desk and
the user touches it, it’s displayed by its default scene. You can override
DefaultScene to return the default scene for your card subclass.

Magic Cap uses minicards as tiny representatives of cards. Minicards act as proxies
in representing cards that aren’t currently displayed. For example, when the user
moves a telecard out of the in box and onto the desk, a minicard represents the
unopened card on the desk. When the user slides a page out of the notebook index,
a minicard represents the page.

Figure 28 Minicards

You can call InstallMiniCardNear to create a minicard for a card and install it as
a subview in any scene or viewable. InstallMiniCardNear calls
MiniCardPrototype to get a template minicard. Override MiniCardPrototype
to return a particular minicard subclass. You can display the card associated with a
minicard by calling the minicard’s TapCenter operation. The card zooms out and
replaces the minicard and its scene.

You can specify the image to use for the card’s minicard by overriding the card’s
SmallCardImage operation, which also specifies the image to use when displaying
cards in a list view. Similarly, you can override Object_TinyClassImage to specify
the image to be used for your card when Magic Cap displays it in the out of memory
window or other similar content list.

To place a minicard in the out box, you can call the minicard’s HopToOutBox
operation. If the current scene is the desk or any scene that has an out box, the
minicard will hop to the out box on the screen. If the current scene has no out box,
Icras, Inc. Confidential Package Development Guide 105

Chapter 6 Cards, Stacks, and Forms Current Card
a window with an out box will appear, the minicard will hop to the out box in that
window, and the window will disappear. The following figure shows the window
and out box that appear when the current scene has no out box.

Figure 29 Out box appears in a window

Current Card
The current card is the card being displayed on the screen. The current card is a
subview of the current scene. You can determine the current card by reading the
iCurrentCard indexical. Magic Cap calls the current card’s AboutToShow
operation just before drawing it on the screen. You can override AboutToShow to
have objects of your card subclass perform some action before they are drawn.
Similarly, you can override AboutToHide to have your objects perform some action
before they are removed from the screen.

You can use the stack scene’s CardNumber attribute to determine the current card’s
relative position in the stack. If you want to display a particular card and you know
its card number, you can call GoToCardNum. You can call
DeleteCurrentCardWithConfirmation on the stack scene to delete the current
card.

Magic Cap keeps track of whether a card has ever been displayed on the screen. You
can find out if a card has ever been displayed by calling WasSeen. You can also call
SetWasSeen to change the setting that determines whether the card has been
displayed. The in box seen uses this information to display a check mark next to
messages the user has read.

Forms
Each card can be associated with a form. The card’s form provides two kinds of
objects for the cards that use it.

• static form objects: viewable objects that are exactly the same on every card, such
as a box or a decorative border.

• dynamic form objects: viewable objects containing some data that can vary from
card to card, such as a text field containing text or a switch that has a setting.

For example, the meeting form in the datebook provides the hourly schedule bar and
buttons, static objects that are the same for every meeting. The form also provides
text fields containing the meeting information, dynamic objects that can have
different contents for every meeting, and a time interval drawn on the schedule bar,
another object that be different for every meeting.
106 Package Development Guide Icras, Inc. Confidential

Forms Chapter 6 Cards, Stacks, and Forms
The most common way to include static objects in your form is by building them in
as subviews. When you declare a form in your instance definition file, you specify all
the objects you want on the form, including static as well as dynamic objects, as a
view chain that is a subview of the form. Magic Cap will draw the form and its
subviews when the user goes to a card that uses the form.

To have your form provide a decorative background, specify the background object
in the form’s border field in your instance definition file. When the user goes to a
card that uses the form, the background will be drawn along with the form.

Dynamic form objects appear on every card that uses the form, but each card stores
its own data for the dynamic form objects. Most classes that are commonly used as
dynamic form objects, including text fields, switches, sliders, choice boxes, and all
other controls, are designed to retain their per-card data automatically by inheriting
the interface of class FormElement . For information on creating your own kinds of
form elements, see "Creating Your Own Form Elements" on page 109.

The form’s formItems field refers to an object list that specifies the dynamic form
objects that inherit from class FormElement . Note that the dynamic form items
referred to by the formItems field are also listed as subviews of the form.

When the user is finished looking at a card and goes to another card or scene, the
card calls its StoreFormData operation. StoreFormData checks the form’s
formItems list. If the list contains any objects, StoreFormData gets the data from
the form objects, stores it as the card’s extra data, then empties the form objects so
that the next card to use the form won’t display another card’s data. When a new
card is installed in the scene, the card calls ExtractCardData to get the values from
the card’s extra data and place them back in the form objects.

You can easily use dynamic form objects that inherit from class FormElement . In
your instance definition file, include the dynamic form objects in the form’s subview
list. In the formItems field, specify an object list that consists of the dynamic form
objects. If you set up the form this way, the dynamic objects will automatically save
and restore their data as the user moves from card to card. The following diagram
shows an example of a form.
Icras, Inc. Confidential Package Development Guide 107

Chapter 6 Cards, Stacks, and Forms Forms
Figure 30 Forms with its subviews and form items

Note that you refer to each dynamic form object at least twice: once as a member of
a view chain, referred to by its containing form, and once as an automatically
updated dynamic form object, referred to by the form items list. Note also that the
form can contain subviews that aren’t in the form items list, such as the stamp in the
example above. These subviews will be drawn on every card, but won’t have card-
specific data installed automatically.

You can add viewables to a form at runtime with the Magic Cap simulator. You can
get many viewables, including switches, sliders, choice boxes, and text fields, from
the Magic Hat. Text fields are available in the tool holder on the control bar. After
creating one of these, you can use a put in form coupon from the misc. drawer of the
Magic Hat’s extras category to put the object in the form. The extras category is only
available in the Magic Cap simulator, not in communicator versions of Magic Cap.

If the user adds objects that are members of class FormElement , Magic Cap adds the
objects to the form items list automatically. When the user goes to another card, the
card calls StoreFormData , which in turn calls Form_UpdateFormItems , which
then examines all the objects on the form. Items that are members of FormElement
are added to the form items list if not already in that list.

Forms include an Image attribute and associated image field. If you specify an image
for a form in your instance definition file or at runtime, the image will be drawn in
the center of the form whenever the form is installed in the scene.

You can get or change the form items at runtime by using the FormItems attribute.

Forms are shared objects, so they are never modified directly. When a card is made
the current card, a copy of the form specified in the card’s prototypeForm field is made
and the copy is installed as a subview of a card. This allows the user to change the
form without affecting other cards that use the same form. The form referenced from
the prototypeForm field should always be an indexical.
108 Package Development Guide Icras, Inc. Confidential

Creating Your Own Form Elements Chapter 6 Cards, Stacks, and Forms
Although a form is normally installed into the current card, you can use the form to
programmatically get at the per-card data in cards other than the current card in a
stack. You can install a form into any card by calling BeginUsingForm . If you pass
true as the needCardData parameter, ExtractCardData will be called to put the
per-card data into the form items. BeginUsingForm will return true if the form
was installed, or false if a form is already installed in this card. When you are
finished using the form with a card that is not current, you should call
EndUsingForm . You can pass true as the hadCardData parameter to have the data
in the form items stored back into the card. Here is how you might write code to get
the data from all the cards in a stack:

Private void
GetAllCardData(Reference stack)
{

ulong index;
ulong count;

count = Count(stack);
for (index = 1; index <= count; index++) {

Reference card;
Boolean formInstalled;
Boolean dataChanged;

// Get each card in the stack
card = At(stack, index);

// Install this card’s form and load up the form items with card data
formInstalled = BeginUsingForm(card, true);

// Do what you will with the data. The data is accessed by getting
// the list of form items on the newly installed form.
dataChanged = AnalyzeData(FormItems(InstalledForm(card)));

// When you’re done, return the form. There’s no need to write the
// data back to the card if it didn’t change.
if (formInstalled)

EndUsingForm(card, dataChanged);
}

}

Creating Your Own Form Elements
Magic Cap provides a large collection of classes, including all text fields and all
controls, that inherit from class FormElement and so can be used as dynamic form
objects just by specifying them in the form items list. You can also create your own
class that acts as a dynamic form object, storing and retrieving its data as the user
moves from card to card.

To create your own class of dynamic form object, inherit the interface of class
FormElement in your new class’s declaration. Then, override the four operations
defined by FormElement . Override IsFormElement to return true if you want the
object to be treated as a form element. Override FormData and SetFormData to
move the object’s contents to and from the form. Override FormDataInfo to
provide information about the dynamic data.
Icras, Inc. Confidential Package Development Guide 109

Chapter 6 Cards, Stacks, and Forms Stacks and Stack Scenes
You can also create a new class of dynamic form object by subclassing an existing
dynamic form element class, such as TextField or Control . In this case, you
probably won’t have to override the FormElement operations to implement your
new class.

Stacks and Stack Scenes
You can make a new card in the stack by calling the stack scene’s CreateNewCard
operation. CreateNewCard makes a new card in the stack by copying the stack’s
prototype card, which is available through the stack’s ProtoCard attribute. The
prototype card is a model that includes all objects that should be present on newly
created cards. You can declare your own prototype card in your instance definition
file, or you can use a supplied card, such as iPrototypeCard . After the new card is
created, Magic Cap goes to the new card. When a new card is created in the stack, it
is added after the last card in the stack.

You can remove a card from its stack and install it in another by calling
MoveToStack . If you pass nilObject as the newStack parameter, the card will not
be part of any stack. You can take the current card out of its stack and remove it from
the screen view list by calling DetachCard . If you want to destroy the current card
completely, not just remove it from the stack, call DeleteCard . To delete the
current card after getting confirmation from the user, call
DeleteCurrentCardWithConfirmation on the stack scene.

Many scenes, especially stack scenes, display a column of five buttons along the right
side of the screen, between the top and bottom bars. Although many scenes have
these buttons, Magic Cap doesn’t provide any explicit support for this feature in its
scene classes. Instead, scenes simply declare these buttons as subviews in instance
definition files. If your scene has five buttons down the right side, you should set
each button’s viewFlags field to 0x10101000 and its border field to
iSquareButtonBorderUp . If your scene uses fewer than five buttons, you can use
an instance of class ButtonBackdrop which fills in the rest of the column with
simulated disabled buttons.
110 Package Development Guide Icras, Inc. Confidential

Stacks and Stack Scenes Chapter 6 Cards, Stacks, and Forms
You should use the following x-y coordinate pairs for the buttons’ relative origins
and content sizes:

Note: Note that the content size of the first button is <50.0,41.0>, while the size of
all others is <50.0,43.0>. You could make the button sizes more uniform while
occupying the same total amount of space by setting the sizes of two of them to
<50.0,42.0> and the other three to <50.0,43.0>. However, due to the way Magic
Cap draws dithered grays, setting the content size of one button to <50.0,42.0>
produces an unattractive dithered line beneath the button. In addition, Magic Cap
is optimized to draw buttons with border iSquareButtonBorderUp and content
size <50.0,43.0> quickly.

When a stack scene is current, the name bar normally displays arrows that the user
can touch to move to the next or previous card. When the user goes to the first or
last card in the stack, one of the two arrows in the name bar vanishes to show that
there are no more cards in that direction. However, you can set a stack to allow the
user to treat the cards as if they were laid out in a circle, continuing past the last card
to the first card, or past the first to the last. Continuing through the cards in this way
is called wrapping, because the path through the cards seems to wrap around the
edges of the stack, from one end to the other. To turn on wrapping, set the canWrap
field of the stack’s instance definition to true , or use the CanWrap attribute to set or
clear this feature.

Stack scenes usually display arrows in the name bar along with the number of the
current card and the total number of cards in the stack. You can suppress that display
by setting the blankTitle scene field, or by overriding ShowNameBarInfo .

The stack of cards refers to its scene with the StackScene attribute. The scene refers
back to its stack with the Stack attribute.

Stacks include a setting that indicates whether there are cards in the stack that
haven’t been opened by the user. You can get or change this setting by calling
ContainsNewItems or SetContainsNewItems . This feature is used mainly by
class MailStack , which shows stacks of telecards, as in the in box and out box.
MailStack is the only Magic Cap class that changes this setting to true .

button position from
top relative origin content size

1 <211.0, -
104.0>

<50.0, 41.0>

2 <211.0, -
53.0>

<50.0, 43.0>

3 <211.0, -1.0> <50.0, 43.0>

4 <211.0, -
51.0>

<50.0, 43.0>

5 <211.0,
102.0>

<50.0, 43.0>
Icras, Inc. Confidential Package Development Guide 111

Chapter 6 Cards, Stacks, and Forms Large Cards and Scrolling
You must call SetContainsNewItems to change the flag to true in your stack
subclass to indicate the presence of new cards if you want to support this feature. The
stack scene changes this setting to false when the user goes to the stack. You can use
this feature in conjunction with the WasSeen and SetWasSeen operations to
indicate whether the user has looked at a card.

Large Cards and Scrolling
Some cards are too large to fit on the screen completely. You can make a card larger
by calling its ExtendBottom operation. For example, the notebook calls
ExtendBottom when the user touches the extend button. You can call RevealTop
if you want to ensure that the top of the card has scrolled into view on the screen, or
RevealBottom to make sure that the bottom of the card can be seen. If you want to
ensure that a particular viewable on the card is visible, you can call
RevealViewable .

These cards usually have scroll arrows that let the user see the entire card.

Electronic Mail
Your package can create a telecard, then present the telecard to the user in the
message scene, which provides standard buttons for addressing and sending the
telecard. In addition, you can add other electronic mail features to your package.

Creating Card, Stack, and Form Objects
You’ll declare instances of StackOfCards , StackScene , and Form in your instance
definition file. You’ll probably never create any objects of these classes at runtime.
You’ll usually declare instances of class Card in your instance definition files, but
your package may allow the creation of new cards at runtime. Instances of class
MiniCard are usually created at runtime by copying a prototype object.

Flags and Indexicals
Class Card defines various flags that you can use to customize the appearance and
behavior of its members. You’ll use these flags primarily when you declare cards in
instance definition files. These flags are implemented as boolean fields in card
objects.

Card flags let you determine information about the card, such as whether it is a
postcard, letter, or envelope, whether the card has been mailed, whether the user can
change the card, and many other settings. For more information on card flags, see
the Utilities.h file.
112 Package Development Guide Icras, Inc. Confidential

Card and Stack Information in the Package Content Object Chapter 6 Cards, Stacks, and
Class StackOfCards defines a few flags that you can use to customize the
appearance and behavior of its members. Stack flags determine whether the stack will
wrap when the user goes past the first or last card, whether the stack can be deleted,
and other settings. You’ll use these flags primarily when you declare stacks in
instance definition files. For more information on stack flags, see the Utilities.h file.

Magic Cap provides many indexicals that contain useful cards and stacks or
information about cards and stacks. Some indexicals, such as iReplyCard and
iForwardCard specify prototype cards for various uses. The iCurrentSceneStack
is the stack associated with the current scene. Several indexicals provide access to the
most common stacks in Magic Cap, such as iInBoxStack , iNameCardsStack , and
iNoteCardStack .

See the Indexicals.cdef file for more information on indexicals.

Card and Stack Information in the Package Content Object
When you declare a stack and its cards in your instance definition file, you should
list the cards individually in the package content object’s install list, with their stack
as the receiver. In addition, you should define indexicals for all your package’s stacks
and list them in the stackIndexicalsList field of the package content object. By doing
putting your cards in the install list and your stacks in the stack indexicals list, Magic
Cap can handle the cards properly if the user moves the cards out of the package and
then packs up the package or removes the storage card containing the package, or if
the cards somehow become disconnected from the package.

For more information on items in the package content object, see the Software
Packages chapter of this book.

Subclasses of Card and Stack
Magic Cap includes many subclasses of Card that specialize its behavior in various
ways. Many built-in scenes in Magic Cap uses card subclasses to display their
information. For example, book pages in the library, folders in the file cabinet and
elsewhere, and name cards are all card subclasses. Because these classes are specialized
for their particular uses, you’ll probably use class Card or create your own subclasses.

There are a few highly specialized subclasses of StackOfCards in Magic Cap, such
as MailStack , used for a collection of telecards, and NameCardStack , used
exclusively by the name card file. You might use class SortedStackOfCards , which
mixes in SortedList to create a stack whose cards are always in order.
Icras, Inc. Confidential Package Development Guide 113

Chapter 6 Cards, Stacks, and Forms Subclasses of Card and Stack
114 Package Development Guide Icras, Inc. Confidential

	Package Development Guide
	Introduction to Objects
	Objects
	Software Packages
	Objects in Memory
	How Objects are Addressed
	Indexicals
	Extra Data

	Object Runtime
	Memory and Clusters
	Clusters
	Shadow Clusters

	References
	Object Relationships
	Special Objects
	Shared Objects
	Ephemeral Objects

	Creating and Destroying Objects
	Creating Objects at Build Time
	Creating Objects at Runtime
	Creating New Objects on Storage Cards
	Destroying Objects
	Using Statically Created Objects

	Addressing Objects
	Addressing Objects at Build Time
	Addressing Objects at Runtime
	References
	Indexicals
	Class Numbers
	Operations

	Accessing Object Data
	Automatic Field Accessors
	Accessors
	Making Objects Usable and Storable
	Using Accessors
	Single-Field Accessors
	Whole-Object Accessors
	Direct Accessors
	Extra-Data Accessors

	Software Packages
	About Software Packages
	Kinds of Packages
	Packages and Storage Boxes
	How Packages Install Objects
	The Installation List
	The Installation Queue

	Package States
	Loading Packages
	Packing and Unpacking
	Technical Difficulties
	Power Off and On
	Removing Packages

	Dynamic Linking
	Exporting a Package Interface
	Importing a Package Interface
	Strong Imports
	Weak Imports

	Creating a Package
	Required Objects
	Specifying a Package Content Object
	Indexicals

	Viewables
	Geometry and Viewable Parts
	Dots and Boxes
	Parts of Viewables
	Viewable boxes
	Borders
	Shadows
	Labels

	Ordering and Containment
	View Hierarchies
	X-Y Coordinates
	Sample Screen View Hierarchy

	Drawing
	Redrawing Viewables
	Drawing Your Own Viewables
	Clipping
	Highlighting
	Colors

	Touching Viewables
	Overriding Touching Operations
	Sliding and Dropping
	DragTrack and StretchTrack

	Advanced Touching Information
	Setting up the Tool and Target
	Touching with the Arranging Tools
	Touch Input Objects
	Viewables as Tools
	Hit Testing

	Miscellaneous Viewable Features
	Hopping
	Borders and Shadows
	Images
	Visibility
	Drawing Notification
	Text
	Sound
	Selection
	Searching
	Periodic Work
	Scribbling and Typing
	Extending
	Disabling
	Orientation
	Stamps, Buttons, and Controls

	Scenes
	Navigation
	Information Windows
	Current Scene
	Cards, Stacks, and Forms
	Scene Additions
	Command Additions
	Rules Additions
	Tools Additions
	Stamp Additions

	Sending, Imaging, and Filing Scene Contents
	Content Proxies

	Scene Information in the Package Contents Object
	Subclasses of Scene
	Scene Flags and Indexicals

	Cards, Stacks, and Forms
	About Cards, Stacks, and Forms
	Navigation and Scenes
	Current Card
	Forms
	Creating Your Own Form Elements
	Stacks and Stack Scenes
	Large Cards and Scrolling
	Electronic Mail
	Creating Card, Stack, and Form Objects
	Flags and Indexicals
	Card and Stack Information in the Package Content Object
	Subclasses of Card and Stack

