
Magic Internet Kit
Programmer’s Guide

April 24, 2000

Magic Internet Kit Programmer’s Guide
Copyright © 1998-2000 Icras, Inc. Portions copyright © 1997-1998 General Magic, Inc.

All rights reserved.

No portion of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means—
electronic, mechanical, photocopying, recording, or otherwise—without the written permission of Icras, Inc. (“Icras”)

+YHUVLRQ#7253233,

License
Your use of the software discussed in this document is permitted only pursuant to the terms in a software license between you
and Icras.

Trademarks
Icras, the Icras logo, DataRover, the DataRover logo, Magic Cap, the Magic Cap logo, and the rabbit-from-a-hat logo are
trademarks of Icras which may be registered in certain jurisdictions. The Magic Cap technology is the property of General
Magic, Inc., and is used under license to Icras, Inc. Apple, the Apple logo, Mac, Macintosh, and MPW are registered
trademarks of Apple Computer, Inc. This software is based in part on the work of the Independent JPEG Group. The
Graphics Interchange Format(c) is the Copyright property of CompuServe Incorporated. GIF(sm) is a Service Mark property
of CompuServe.

All other trademarks and service marks are the property of their respective owners.

Limit of Liability/Disclaimer of Warranty
THIS BOOK IS SOLD “AS IS.” Even though Icras has reviewed this book in detail, ICRAS MAKES NO
REPRESENTATION OR WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK. ICRAS SPECIFICALLY DISCLAIMS
ANY IMPLIED WARRANTIES OR MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE AND
SHALL IN NO EVENT BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGE,
INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some states do not allow for the exclusion or
limitation of implied warranties or incidental or consequential damage, so the exclusions in this paragraph may not apply to
you.

Patents
The Magic Cap software is protected by the following patents: 5,611,031; 5,689,669; 5,692,187; and 5,819,306. Portions of
the Magic Cap technology are patent pending in the United States and other countries.

Josh and Ed’s Excellent Internet Kit
Lyrics and electric banjo by Josh Carter. Drums and synths by Ed Satterthwaite. Backing vocals by Zarko Draganic, Dean Yu,
and C.J. Silverio. Tour management by Mark “The Red” Harlan.

Get out the banjo and let’s boogie to this
This product is “commercial item” as that term is defined at 48 C.F.R. 2.101 (OCT 1995) consisting of “commercial
computer software” and “Commercial computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (SEPT
1995) and is provided to the U.S. Government only as a commercial end item. Consistent with 46 C.F.R. 12.212 and 48
C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire this product only with those
rights set forth therein.

Icras, Inc.
955 Benecia Avenue Tel.: 408 530 2900
Sunnyvale, CA 94086 USA E-mail: info@icras.com

Fax: 408 530 2950
URL: http://www.icras.com/

mailto:info@datarover.com
http://www.datarover.com

. . .9
 . .10

. . .12

. . .12
 . .12

. .14
. .15
Table of Contents

Chapter 1: Introduction . 5
Real connectivity made real easy . 5
What you should already know . 6
About this document . 6

Creating a New Package . 7
Connections . 7
Streams . 7
Multithreading with Actors . 7

Chapter 2: Creating a New Package . 9
Templates . 9

Templates provided in the kit . 9
Terminal (a.k.a. CujoTerm) .
Finger .

Cloning a template . 10
Where to go from here . 10

Chapter 3: Connections . 11
The Connection class . 11

Methods of Connection . 12
CanCreateStream .
CreateStream .
DestroyStream .

CreateStream error handling . 13
Connection subclasses in the Magic Internet Kit . 14

InternetConnection . 14
InternetConnection attributes .
Details of InternetConnection .

ModemConnection . 16
SerialPortConnection . 16

I’m connected. Now what? . 17

Chapter 4: Streams . 19
Essential methods of Stream . 19

CountReadPending . 19
Icras, Inc. Confidential Magic Internet Kit iii

Chapter Table of Contents
Read . 19
Write . 20

Other useful methods . 20
ReadUntil . 20
WriteLiteral . 21
WriteTextAsASCII, WriteTextAsUnicode . 21

Synchronous stream issues . 21

Chapter 5: Multithreading with Actors .23
Actor concepts . 23
Creating an actor . 24
Using an actor . 24
Destroying an actor . 25
Moving between actors . 25

Semaphores . 25
Cross-actor exceptions . 26

Actors in the Magic Internet Kit . 26
iv Magic Internet Kit Icras, Inc. Confidential

1
Introduction

Real connectivity made real easy
The Magic Internet Kit is a complete development kit for creating communicating
Magic Cap applications. The heart of the Magic Internet Kit is an easy-to-use object
framework which provides:

• TCP/IP support for writing full-featured Internet/Intranet applications.

• Supporting protocols for TCP/IP such as PPP, Ethernet, and DNS.

• Serial communications over a DataRover 840's built-in modem and serial port.

• Ability to add additional hardware drivers without needing to change or rebuild
client applications.

From the first steps of creating a communicating application to maintaining the code
later, the Magic Internet Kit makes your work easier and your development cycle
faster. From the very beginning, you can use one of several templates provided with
the kit to get you started right where you want to be. These templates range from a
basic Finger client to a ready-to-go, multi-threaded terminal package.
Icras, Inc. Confidential Magic Internet Kit 5

What you should already know Chapter 1 Introduction
While the templates get you started quickly, the real power of the Magic Internet Kit
lies in its robust and flexible programming interfaces. This framework is arranged to
provide you with a single set of methods that you can call to create any type of
communications stream supported by the kit.

Figure 1 Magic Internet Kit layout

As illustrated, many means of communication are available on the bottom end, and
the application can access all of them through one API. The Magic Internet Kit API
will be discussed in the Connections chapter of this guide.

What you should already know
The Magic Internet Kit Programmer’s Guide assumes you are familiar with the basics
of TCP/IP and related protocols. If you need an introduction, I recommend
Internetworking with TCP/IP by Douglas Comer or TCP Illustrated by Richard
Stevens. If you don’t want to write TCP/IP applications, then you don’t need to
worry; the Magic Internet Kit also works directly with the modem or serial port.

This document also assumes you are familiar with Magic Cap development. If you
need to find out more about the basics of writing a Magic Cap application, see the
Magic Cap Package Development Guide included with your software development
kit.

About this document
The Magic Internet Kit Programmer’s Guide starts with a discussion of the templates
available for creating a package, and then proceeds to discuss the high-level APIs for
communications. Later chapters dive into detail about TCP/IP and multithreaded
application code. This section will briefly describe the topic of each chapter.
6 Magic Internet Kit Icras, Inc. Confidential

Chapter 1 Introduction About this document
Creating a New Package
This chapter describes the process of creating a new communicating package. Topics
include the template applications provided by the Magic Internet Kit and how to
clone a template for your own application.

Connections
This chapter discusses the centerpiece of the Magic Internet Kit: the Connection
class. First it describes the API provided by Connection, and then describes specific
subclasses of Connection, including InternetConnection.

Streams
This chapter describes how to use Magic Cap communications streams. The Stream
class is used for reading and writing data, so topics include the methods used to read,
write, and catch errors.

Multithreading with Actors
Multithreading allows your application to run code “in the background,” which is
very important with time-consuming communications tasks. This chapter tells you
how to use multithreading, and demonstrates the concepts with the CujoTerm
template.
Icras, Inc. Confidential Magic Internet Kit 7

About this document Chapter 1 Introduction
8 Magic Internet Kit Icras, Inc. Confidential

2
Creating a New Package

Templates
The first step in creating a new package is to clone an existing template. These
templates are functional Magic Cap packages in themselves, but they are designed to
be starting points for your own application. This chapter describes the templates
provided in the Magic Internet Kit and how to use them.

Templates provided in the kit
Templates are provided to give you a good starting point for a new application.
There are several interface elements that many communicating packages may want
to use – for example a choice box that lets the user pick an Internet provider – so the
Magic Internet Kit lets you start with varying levels of functionality built in. This
section will describe each of the included templates.

Note: These templates are contained in your software development kit’s Samples
folder.

Terminal (a.k.a. CujoTerm)
This is the classic terminal package. CujoTerm gives you a simple terminal that you
can connect to a remote host over whatever connections means the kit supports.
CujoTerm’s TerminalField class is a TextField subclass which displays text from the
communication stream, accepts typing and sends data to the stream, and even lets
the user drop text coupons that will be sent to the stream.
Icras, Inc. Confidential Magic Internet Kit 9

Where to go from here Chapter 2 Creating a New Package
CujoTerm also uses a ProviderChoiceBox, a subclass of ChoiceBox, which allows
the user to choose an Internet service provider (ISP) for the connection.
ProviderChoiceBox is defined by the core Internet Kit framework since it’s very
handy, so you can use this class even if you don’t start from the CujoTerm template.
Internet providers are set up in Magic Cap’s Internet Center, so your package does
not need to worry about this feature; you can get to the information using
ProviderChoiceBox or your own code.

The primary feature of CujoTerm is its architecture. This terminal, while basic in
user-level features, has an advanced multi-threaded structure behind it that can
support multiple simultaneous TCP/IP connections. The two classes implementing
this are the CommsActor and CommsManager. The code executing on its own
thread is part of the CommsActor, and the CommsManager is used to easily create
and destroy CommsActors. The concepts behind these classes will be discussed in
greater detail in the Multithreaded Communications chapter of this document.

CujoTerm is a good template to use for testing code or investigating protocols. For
example, if you wanted to write a package that queried and responded to a database,
you could use CujoTerm to make sure that the commands you are sending to the
server are actually doing the right thing. Additionally, since CujoTerm works out of
the box, you can use it as a good sample package to learn from.

Finger
The Finger template package is a basic finger client as defined by RFC 742. Its user
interface is very sparse, but like CujoTerm it include s the handy ProviderChoiceBox
class for picking an Internet provider. Finger is a good clean slate to start a new
package from if you don’t anticipate using many of CujoTerm’s goodies.

Cloning a template
Cloning a template is just like cloning any other package. Refer to your development
tools guide for the appropriate procedure.

Where to go from here
Now that you’re set up with a clone of your preferred template, it’s time to make it
do some real work. The next chapter, Connections, shows you how to connect to a
remote host, use the connection, and then destroy it when you’re done.
10 Magic Internet Kit Icras, Inc. Confidential

3
Connections

The heart of the Magic Internet Kit is its easy-to-use object framework for
connecting your application to the outside world. This act can take several forms,
from serial communications to TCP/IP over a variety of data links. This chapter
describes the programming interfaces your package uses to create, use, and destroy
links to remote hosts.

The Connection class
The Connection class defines the shared programming interface for creating all
types of communication streams. Subclasses of Connection are defined for each type
of communications means supported by the kit; for example InternetConnection is
used for TCP/IP-based communications.

Connection subclasses serve two purposes: they contain the data needed to establish
their data stream, and they implement the API defined to by Connection to create
and destroy their streams. Like other Magic Cap objects, connection data is stored
in fields that are accessed via attributes. The exact fields are dependent on the type
of connection, so templates like CujoTerm use AttributeText objects and variants
thereof to provide a user interface for filling in data. This style allows the package to
have an appropriate user interface for the connection type, but the interface is
separate from the application code.

This section will discuss the API defined by the Connection class, and later sections
will discuss details of each of the Connection subclasses.

Source Code Note: The Connection class definition can be found in the
Connection:Connection.cdef file inside your Magic Internet Kit folder.
Icras, Inc. Confidential Magic Internet Kit 11

The Connection class Chapter 3 Connections
Methods of Connection
Connection defines three methods: CanCreateStream, CreateStream, and
DestroyStream. We’ll cover what each one does in detail.

CanCreateStream
operation CanCreateStream(): Boolean;

This method is called by client code to ask if the connection could potentially create
a stream. For example, if this Connection subclass communicates using the modem,
CanCreateStream would check to see if the phone line is plugged in, make sure the
user has set up a dialing location, and check that the modem is not already in use.

Be aware that CanCreateStream does not guarantee that a connection can be made,
but only that a connection cannot be made. Many factors affecting the connection
cannot be determined until the attempt is actually made; for example, if a remote
server you are trying to contact is offline, you can’t know that until you try
connecting to it. CanCreateStream is still useful, however, because it allows you to
make a quick check for common problems before launching threads or other
communications setup code.

CreateStream
operation CreateStream(): Stream;

CreateStream is the method that tells a Connection to create a stream to its remote
host. If the attempt succeeds, this method will return a reference to the stream it
created. The stream returned from CreateStream is always a subclass of
CommunicationStream, for example the Modem class for serial modem
connections, or the TCPStream class for TCP/IP connections.

If the connection attempt fails, CreateStream will throw a CommsException. Error
handling with CommsExceptions is slightly different than many other exceptions in
Magic Cap, so this topic will be discussed shortly in the following CreateStream
error handling section.

Note: With the InternetConnection class, you can call CreateStream repeatedly to
get multiple streams over the same data link.

DestroyStream
operation DestroyStream(stream: Stream);

DestroyStream is the inverse of CreateStream; when a stream is no longer needed,
this method is used to destroy it in whatever manner is appropriate. This method
will also destroy any objects or buffers that were allocated by CreateStream. For
example, if CreateStream creates a TCPStream object, DestroyStream will be sure to
destroy that object and its local buffers. Never call Magic Cap’s Destroy method on
a stream returned by CreateStream; always use the kit’s DestroyStream method since
it knows how to deal with each type of stream appropriately.
12 Magic Internet Kit Icras, Inc. Confidential

Chapter 3 Connections The Connection class
CreateStream error handling
As a general rule with communications, connecting to a remote host requires many
things to all work together, so there are many places for things to go wrong. Errors
in Magic Cap are typically handled with exceptions that get thrown when the error
occurs and are then caught by application code designed to handle that error. The
exception itself is usually an indexical that serves as a unique identifier for a type of
error. For more information on handling these types of exceptions, see the Magic
Cap Package Development Guide.

Given the multitude of possible errors that could occur when creating a
communication stream, an application using typical Magic Cap exceptions would
have to catch almost a dozen separate exceptions. The code for setting up the error
handling could be pages long! The Magic Internet Kit takes a slightly different but
much cleaner approach by using heavyweight exceptions.

A heavyweight exception is similar to any other exception in how it is used, but in
this case the exception is not an error code but rather a real, live object. In the case
of CreateStream, the object that is thrown is a CommsException or one of its
subclasses. Code calling CreateStream, therefore, can catch all of the possible
CommsExceptions by catching them by their class. The method that does this is
called, quite reasonably, CatchByClass. Here is an example of how to use
CatchByClass to catch all CommsException errors:

Once you have caught a CommsException object, you can find out which exception
it is by comparing it to the ones listed in the Connection:CommsException.odef file
included in your Magic Internet Kit folder. For example:

The CujoTerm template uses this approach and announces error messages to the
user for each exception.

Reference exception = CatchByClass(CommsException_);

if (exception != nilObject)
{
 /* we caught a CommsException object */
 return false; /* your error handling code goes here */
}

stream = CreateStream(iMyConnection);

Commit(); /* CommsException_ */

if ((exception = CatchByClass(CommsException_)) != nilObject)
{
 /* we caught a CommsException object */
 if (exception == ieCannotConnectHardware)
 {
 /* can't connect the hardware to the remote host */
 return false;
 }
 else if /* etc... */
}

Icras, Inc. Confidential Magic Internet Kit 13

Connection subclasses in the Magic Internet Kit Chapter 3 Connections
Additionally, errors are grouped into subclasses of CommsException, for example all
three of the DNS-related errors are of the DNSCommsException class. This gives
you an extra level of granularity if you want it. For the case of DNS, you can check
to see if an exception was any of the DNS errors with the following code:

Furthermore, this feature means that you can CatchByClass on particular subclasses
of CommsException if you want to have different handlers for them. In practice this
last technique might not be useful since all CommsException errors are fatal for a
given connection attempt, but it might come in handy.

Connection subclasses in the Magic Internet Kit
The Magic Internet Kit includes three subclasses of Connection:
InternetConnection for creating TCP/IP streams, ModemConnection for creating
dial-up serial modem streams, and SerialPortConnection for streams using the
DataRover 840’s built-in serial port.

InternetConnection
InternetConnection is used to create and destroy TCP/IP streams. This is often a
daunting task on many platforms, but InternetConnection takes care of all the
details for you – your application only has to deal with the three methods defined by
Connection. Thanks to the Internet Center, filling in the fields of an
InternetConnection object is also a snap. The user fills in all of the required
information for their Internet Service Provider (ISP) in the Internet Center, and
then the application can easily use that information. First we’ll discuss filling in
InternetConnection’s fields, and then how that data is used.

InternetConnection attributes
attribute ServiceChoice: InternetServiceChoice;
attribute ServiceInfo: InternetServiceInfo;
attribute HostName: Text;
attribute HostPort: Unsigned;

InternetConnection defines two key attributes: ServiceChoice and ServiceInfo.
These are filled in with InternetServiceChoice and InternetServiceInfo objects.
The first class, InternetServiceChoice, defines a service provider and contains the
relevant data needed for a connection. This includes a Means object which holds
information about the hardware driver, the ISP’s name, and other interesting things.
Fortunately, your application does not need to create or set up these objects; they are
created by the Internet Center when the user sets up an ISP. The easiest way to fill
in this field is to use the Magic Internet Kit’s ProviderChoiceBox class. This class

if ((exception = CatchByClass(CommsException_)) != nilObject)
{
 /* we caught a CommsException object */
 if (Implements(exception, DNSCommsException_))
 {
 /* a DNS-related error occured */
 return false;
 }
 else if /* etc... */
}

14 Magic Internet Kit Icras, Inc. Confidential

Chapter 3 Connections Connection subclasses in the Magic Internet Kit
is used by both the Finger and CujoTerm templates, and it provides a list of the ISPs
that the user has set up in the Internet Center. It then sets the iCurrentServiceChoice
indexical to the matching InternetServiceChoice object. Simply put an instance of
ProviderChoiceBox in your package and set the ServiceChoice attribute of your
InternetConnection objects to iCurrentServiceChoice.

The second class, InternetServiceInfo, specifies the remote host name and port that
you want to connect to. Setting a destination host name and port are very common
tasks, so InternetConnection helps out by defining its own HostName and
HostPort attributes. Getting and setting these attributes with an
InternetConnection object will actually get and set fields within its
InternetServiceInfo object, but your application does not notice the difference.
Furthermore, creating a new InternetConnection object will automatically create a
matching InternetServiceInfo object for it to use.

Note: The HostName attribute of InternetConnection can be either a symbolic
host name (e.g. www.datarover.com) or an IP number (e.g. 204.188.97.7). If the
host name is symbolic, InternetConnection will use Domain Name Resolution to
look up the name automatically.

The easiest way to set up an InternetConnection is to use AttributeText and
UnsignedAttributeText objects that point to the HostName and HostPort
attributes. The first class, AttributeText, serves as the data store for a text field and
fills in a text attribute of its target object with the field’s contents. The second class,
UnsignedAttributeText, is a subclass of AttributeText defined by the Magic Internet
Kit for targeting an Unsigned attribute. See the CujoTerm sample for using these
two classes.

Source Code Note: Examples of AttributeText and UnsignedAttributeText can be
found in the CujoTerm:InternetSetup.odef file.

Details of InternetConnection
InternetConnection hides the complexity of TCP/IP connections under the
Connection class’s methods. CanCreateStream checks to make sure that its
ServiceChoice and ServiceInfo objects have enough data for the connection, and also
makes sure the hardware is available. One very useful feature in Magic Cap is that
TCP/IP is part of the system itself, so multiple applications can transparently share
a data link to the service provider.

CreateStream also uses Magic Cap’s ability for multiple applications to share a data
link. If a data link to a given service provider does not exist, CreateStream will create
one automatically. If a data link is already up and running – even if it was created by
completely separate application – CreateStream will use the existing link.
CreateStream will automatically look up symbolic host names if needed, so your
application does not need to worry about name resolution (DNS).
Icras, Inc. Confidential Magic Internet Kit 15

Connection subclasses in the Magic Internet Kit Chapter 3 Connections
DestroyStream is just as intelligent as CreateStream. If CreateStream starts up a new
data link, DestroyStream will take it down as long as there are no other users. In fact,
if another application starts up a stream on the data link created by your application,
DestroyStream will leave the link in place for the other application. It will then be
taken down automatically when the other application finishes.

ModemConnection
attribute SerialServer: CommunicationStream;
attribute PhoneNumber: Text;

ModemConnection is used for serial dial-up access to remote modems. This class is
not used for PPP connections – you would use InternetConnection for that – but
rather for raw serial links over a phone line. I recommend building applications using
internet protocols if at all possible, but sometimes a direct dial-up link is the only
way to access a legacy system.

Both ModemConnection and SerialPortConnection (discussed below) inherit from
a common class named SerialConnection. SerialConnection defines a SerialServer
attribute which directs the connection to specific hardware. In most cases, a
ModemConnection’s serial server will be iModem, the built-in modem on a
DataRover 840. Additional hardware can be supported with add-on driver packages.

The PhoneNumber attribute is specified by the HasPhoneNumber mixin class
which ModemConnection inherits from. The format of these phone numbers is the
country-specific dialing prefix (+1 in the United States) followed by a tab, and then
the number with area code. Any other dialing prefixes and the option of dialing the
area code are determined by settings in the user’s dialing location.

Note: If you want to dial a number explicitly, prefix the number with a double-
quote; e.g. ”123 will dial exactly 123 regardless of the user’s dialing location setup.

SerialPortConnection
attribute SerialServer: CommunicationStream;
attribute BaudRate: Unsigned;

SerialPortConnection is used to access the DataRover 840’s built-in serial port. As
before, I recommend using internet protocols instead of direct serial links – for
example, running SLIP on the serial line instead – but sometimes a legacy system will
only support direct serial links.
16 Magic Internet Kit Icras, Inc. Confidential

Chapter 3 Connections I’m connected. Now what?
The SerialServer attribute of most SerialPortConnection objects will be
iSerialAServer, the built-in serial port. The BaudRate attribute should be set to any
rate supported by the port. The DataRover 840’s port can handle 300bps to
38,400bps and most speeds inbetween.

Note: Keep in mind that both ModemConnection and SerialPortConnection do
not ensure reliable data transfer. Data may get garbled or dropped. If the data is
critical, your application must provide error detection and correction! Using a
reliable, error correcting protocol like TCP/IP is recommended if possible.

I’m connected. Now what?
Now that you know about creating and destroying streams with Connection objects,
and how to fill in the fields of these objects, it’s time to look at the object returned
by CreateStream: the stream. Streams are the topic of the next chapter.
Icras, Inc. Confidential Magic Internet Kit 17

I’m connected. Now what? Chapter 3 Connections
18 Magic Internet Kit Icras, Inc. Confidential

4
Streams

Subclasses of Stream are used for sending data between Magic Cap and a remote
host. There are two essential methods used with streams: Read and Write. There are
other handy methods for finding out how many bytes are waiting to be read, or
writing the contents of a null-terminated c-string, and we will discuss several of these.

Essential methods of Stream
Using Magic Cap streams is straightforward. CountReadPending returns the
number of bytes available to read, Read reads the bytes, and Write writes bytes.

CountReadPending
operation CountReadPending(): Unsigned, noFail;

This method is used to find out how many bytes are in the stream’s local buffer and
are therefore available for immediate reading. Reading is a synchronous operation,
so code that does not want to block while reading should always call
CountReadPending first to check how many bytes are available.

Read
operation Read(buffer: Pointer; count: Unsigned): Unsigned, noFail;

This method is used to read a number of bytes from a stream into a buffer. If the
number of bytes requested by Read are not yet available – for example the remote
host has not sent them – Read will block until either all the bytes are received or an
error occurs. The return value is the number of bytes that were read, and comparing
this value to the number of bytes requested lets the application know if an error
occurred; if fewer bytes were returned than requested, then an error occurred but
Read still returned as much data as it could get.
Icras, Inc. Confidential Magic Internet Kit 19

Other useful methods Chapter 4 Streams
One useful tactic when waiting for data is to block on a one character read and then
read any other pending data. For example, the following code is used in the
CujoTerm template application:

In this case, the one character read will block until either data is available or an error
occurs, for example the remote host closed the stream. When Read returns, we check
to make sure that Read returned a character, and if not an exception is thrown. If the
character was read okay, we fetch the rest of the pending bytes, up to 255 total, and
process them.

Write
operation Write(buffer: Pointer; count: Unsigned), noFail;

Write, as one can imagine, is used to write data to a stream. With TCP streams, write
will immediately return after placing the bytes into TCP’s outgoing buffer. If the
stream was closed for some reason, or some other error occurs, Write will instead
throw an iServerAborted exception. As a result, all calls to Write should be prepared
to catch iServerAborted exceptions and handle the error case.

Other useful methods
The stream class defines several additional methods for your convenience. All of
these methods are based on the essential three methods discussed above, so error
handling tactics are identical; methods that Read data should check return values,
and methods that Write data should catch iServerAborted exceptions.

ReadUntil
operation ReadUntil(buffer: Pointer; endChar: UnsignedByte; maxLen:

Unsigned; var numRead: Unsigned; VAR numinBuf: Unsigned): Boolean,
noFail;

char buffer[255];
ulong count = Read(stream, &buffer[0], 1);

if (count != 1)
{
 /* error case */
 Fail(iServerAborted);
}
else /* count == 1; no errors */
{
 count = CountReadPending(stream);

 if (count != 0)
 {
 /* fill the rest of the buffer */
 if (count > 254) count = 254;
 Read(stream, &buffer[1], count);
 }

 /* Remember that we already read one byte up above! */
 count++;

 HandleBytes(client, (Pointer)buffer, count);
}

20 Magic Internet Kit Icras, Inc. Confidential

Chapter 4 Streams Synchronous stream issues
ReadUntil is just like Read, except that is used to read until a specified character is
found, or until a specified number of characters is read. This method can be very
useful for reading data one line at a time; your code can ReadUntil the EOL
character very easily. The boolean return value determines if the character was found.
If the return value is true, the character was found. This character will not be in the
buffer, so the *numInBuf parameter will be one less than *numRead. If the return
value is false, ReadUntil read until the maxLength parameter was reached but did
not find the character, or ReadUntil encountered an error. To tell which problem
caused ReadUntil to return false, compare *numRead to maxLength. If these values
are the same, ReadUntil did not find the character, but if *numRead is less than
maxLength, and error occurred while reading from the stream.

WriteLiteral
operation WriteLiteral(dataToWrite: Literal);

WriteLiteral is used to write a null-terminated c-style string to a stream. It will write
everything in the string except for the null terminator.

WriteTextAsASCII, WriteTextAsUnicode
operation WriteTextAsASCII(text: HasText);
operation WriteTextAsUnicode(text: HasText);

These two methods write Text objects to a stream. The first method,
WriteTextAsASCII, writes the contents of a Text object as 8-bit characters and will
replace all non-ASCII characters with ‘?.’ The second method,
WriteTextAsUnicode, writes the text object as 16-bit unicode characters.

Synchronous stream issues
All stream methods are synchronous, meaning they will not return until they have
either finished their task or have encountered an error. This detail may not be very
important for writing on some streams – e.g. TCP buffers small writes and returns
quickly – but it is very important for reading. The Read method will block until all
bytes requested are actually read, so if the remote host is slow sending data, your
application must make provisions for not making the user interface halt while
waiting.

There are two means of ensuring that your application does not block user
interaction. The first is to periodically check CountReadPending until all data that
you want can be read, and then call Read knowing that the data is available in the
stream’s local buffer. The second, and by far most preferable way, is to do all
blocking communications work on a separate thread. With this tactic, user
interaction takes place on its own thread, so your communications thread can block
and the user will not notice; they can go on using other parts of your application or
Magic Cap. Multithreading is the topic of our next chapter.
Icras, Inc. Confidential Magic Internet Kit 21

Synchronous stream issues Chapter 4 Streams
22 Magic Internet Kit Icras, Inc. Confidential

5
Multithreading with Actors

Magic Cap is a multi-threading platform, and threads are very handy for
communications, so this document will briefly describe how to use them. As you
may have noticed with the Finger template, blocking all user interaction while
dialing the phone or waiting for a remote server is, at best, very annoying for the user.
Instead of executing time consuming code on the thread handling user interaction,
applications should create their own threads for these tasks.

In Magic Cap, a thread is called an Actor. Applications wishing to create their own
actors must subclass the Actor class and override its Main method to make it do what
they want. This section will briefly cover how to use actors, but the Magic Cap
Package Development Guide provides a more complete discussion of this topic. We
recommend that you read that chapter as you have time.

Actor concepts
Like everything in Magic Cap, an actor is an object. The base Actor class does not
do anything when you create it, but rather it is meant to be subclassed. The first
method that you should override is Main. Main is the heart of the actor; when the
actor is created, Main is executed. When Main returns, the actor is destroyed.

Magic Cap uses cooperative multitasking with its actors, so each actor should give
time to other actors. This is done by calling RunNext on the scheduler, referenced
by its class number Scheduler_. RunNext tells the scheduler to run the next waiting
actor while keeping the current one in the queue.

Some methods you might call will automatically call RunNext if they are going to
take a while to return. For example, if you call Read on a TCPStream object, and the
Read cannot be immediately satisfied because all the bytes requested are not
available, Read will call RunNext to let other actors do their stuff.
Icras, Inc. Confidential Magic Internet Kit 23

Creating an actor Chapter 5 Multithreading with Actors
Creating an actor
Actors are created using the NewTransient method. Here’s an example:

This code will create a new CommsActor class. The second nil parameter is for
parameters that one might want to pass for the new actor, and passing nil tells Magic
Cap to use the default parameters. If you want to pass in parameters – for example
the size of the execution stack that the actor should have – you can do so just like for
any other object. Here’s an example of setting the stack size manually:

Once the actor is created, it will be ready to run in the scheduler. Keep in mind that
the code in your actor’s Main method will not start executing until the scheduler
switches to the actor. This will happen the next time that you, or the system, calls
RunNext.

Using an actor
As mentioned above, all the real work of an actor is performed in the Main method.
Here’s a sample main method:

There is one essential caveat to using actors which you need to be aware of: code
running on anything but the User Actor cannot call methods that draw on the
screen. This means that code in the above MyActor_Main method cannot move
viewable objects, call RedrawNow, or otherwise change stuff in the user interface. If
you need to modify viewables or draw on the screen, you must use a special method
called RunSoon to execute a function on the User Actor.

Note: There is one exception to the rule of not messing with stuff on screen from
outside the User Actor: announcements. You can always call the Announce method
regardless of the current actor since it will automatically use RunSoon if needed.

newActor = NewTransient(CommsActor_, nil);

NewActorParameters newActorParams;
ZeroMem(&newActorParams, sizeof(NewActorParameters));

newActorParams.stackSize = 0x2000; /* default is 0x1000 (4K) */

newActor = NewTransient(CommsActor_, &newActorParams);

Method void
MyActor_Main(Reference self, Pointer UNUSED(params))
{
 while (true)
 {
 DoSomeStuff(self);

 if (SomeFatalErrorOccurred(self))
 {
 return;
 }
 }
}

24 Magic Internet Kit Icras, Inc. Confidential

Chapter 5 Multithreading with Actors Destroying an actor
There is one more caveat to using actors in Magic Cap: an actor is a transient object,
so it may or may not get destroyed when the device is power cycled. If Magic Cap
decides to clean up transient memory while powering up or down, the actor will be
destroyed, but otherwise it will stay around and start executing when the device
powers up again. As a result, special care must be taken to ensure that the state of an
actor does not get confused if the power is turned off and on. This is particularly
important with communications, of course, because any data links will get shut
down when the power is turned off.

One option for managing transient actors is overriding the ResetClass method of an
object. ResetClass gets called when the device is powered on, so you can use this
method to hunt down any actors that need to be managed and do whatever is
appropriate. For communications this usually means destroying the actor. Another
option is mixing in the WantsPowerEvents class and overriding PoweringOn.

Source Code Note: The Magic Internet Kit’s CujoTerm template illustrates how
to override ResetClass and destroy remaining actors at power-up time. See the
CommsManager class in CujoTerm:CommsManager.[cdef/cpp].

Destroying an actor
Code can destroy an actor using Magic Cap’s DestroyActor method. If the code
wanting to kill the actor is running on the actor in question, though, it should
instead force the actor’s Main method to return. Returning from Main will destroy
the actor automatically.

Moving between actors
Magic Cap provides mechanisms for code executing on one actor to talk to other
actors, so we’ll briefly cover those mechanisms here. There are a few different ways
to manage multiple threads, including semaphores, cross-actor exception throwing,
and the RunSoon method mentioned above. RunSoon is not covered in this
document at the time.

Semaphores
A Semaphore object is very handy for controlling access to a resource. Magic Cap’s
semaphores are more intelligent than the traditional semaphore in operating system
theory, in fact they behave almost like monitors. Semaphores provide automatic
queueing and dequeueing as needed to control access to a single resource from
multiple threads, so there is no need to poll a semaphore.

There are two key methods for using a Semaphore: Access and Release. Access is
used to hold down the semaphore. If the semaphore being accessed is not already
held down by code on another actor, Access will return immediately. If the
semaphore is already in use, though, Access will block until someone else releases the
Icras, Inc. Confidential Magic Internet Kit 25

Actors in the Magic Internet Kit Chapter 5 Multithreading with Actors
semaphore using Release. Release tells the semaphore that you’re done messing with
it, and it will then wake up the next actor in the queue that wants to access the
semaphore.

Cross-actor exceptions
If you’re not already familiar with exception handling in Magic Cap, you should read
the “Handling Exceptions” chapter of the Magic Cap Package Developers Guide for
a good introduction. This section briefly describes how to use exceptions with actors.

Every actor has its own exception stack, so an exception thrown on one actor using
Fail cannot be caught from another actor. This is very useful for localizing exception
handling code; for example an iServerAborted exception thrown on a
communicating application’s comms actor won’t be caught accidentally by some
other actor.

If code executing on one actor wants to throw an exception for a different actor to
catch, it should use the FailSoon method. FailSoon will cause a specified exception
to get thrown on the other actor the next time that the actor comes up in the
scheduler. If the target actor is not ready to run, e.g. it is blocked, the actor will be
awakened and the exception thrown.

Source Code Note: See CommsManager_DestroyCommsActor in the CujoTerm
template for an example of using FailSoon.

Actors in the Magic Internet Kit
If all of this multithreading stuff looks intimidating, don’t fret – the Magic Internet
Kit comes to the rescue. The CujoTerm template makes heavy use of actors. All
connecting and reading is performed on its CommsActor object. Additionally, there
is a CommsManager class that is used to create and destroy CommsActor objects.
You can freely modify these to suit your own needs.

Source Code Note: See the CommsActor.[cdef/cpp] and CommsManager.[cdef/
cpp] files in CujoTerm for its use of actors.
26 Magic Internet Kit Icras, Inc. Confidential

	Magic Internet Kit
	Introduction
	Real connectivity made real easy
	What you should already know
	About this document
	Creating a New Package
	Connections
	Streams
	Multithreading with Actors

	Creating a New Package
	Templates
	Templates provided in the kit
	Terminal (a.k.a. CujoTerm)
	Finger

	Cloning a template

	Where to go from here

	Connections
	The Connection class
	Methods of Connection
	CanCreateStream
	CreateStream
	DestroyStream

	CreateStream error handling

	Connection subclasses in the Magic Internet Kit
	InternetConnection
	InternetConnection attributes
	Details of InternetConnection

	ModemConnection
	SerialPortConnection

	I’m connected. Now what?

	Streams
	Essential methods of Stream
	CountReadPending
	Read
	Write

	Other useful methods
	ReadUntil
	WriteLiteral
	WriteTextAsASCII, WriteTextAsUnicode

	Synchronous stream issues

	Multithreading with Actors
	Actor concepts
	Creating an actor
	Using an actor
	Destroying an actor
	Moving between actors
	Semaphores
	Cross-actor exceptions

	Actors in the Magic Internet Kit

