
Guide to Development
Tools

For Microsoft Windows

April 24, 2000

Guide to Development Tools for Microsoft Wiindows
Copyright © 1999-2000 Icras, Inc. Portions copyright © 1994-1998 General Magic, Inc.

All rights reserved.

No portion of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means—
electronic, mechanical, photocopying, recording, or otherwise—without the written permission of Icras, Inc. (“Icras”)

(version 4/17/00)

License
Your use of the software discussed in this document is permitted only pursuant to the terms in a software license between you
and Icras

Trademarks
Icras, the Icras logo, DataRover, the DataRover logo, DataRover Remote Access Kit, Magic Cap, the Magic Cap logo, and the
rabbit-from-a-hat logo are trademarks of Icras, Inc. which may be registered in certain jurisdictions. The Magic Cap
technology is the property of General Magic, Inc., and is used under license to Icras, Inc. Microsoft, Developer Studio, Visual
Studio, and Visual C++, are all trademarks of Microsoft Corporation.

All other trademarks and service marks are the property of their respective owners.

Limit of Liability/Disclaimer of Warranty
THIS BOOK IS SOLD “AS IS.” Even though Icras, Inc. has reviewed this book in detail, ICRAS MAKES NO
REPRESENTATION OR WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK. ICRAS SPECIFICALLY DISCLAIMS
ANY IMPLIED WARRANTIES OR MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE AND
SHALL IN NO EVENT BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGE,
INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Some states do not allow for the exclusion or
limitation of implied warranties or incidental or consequential damage, so the exclusions in this paragraph may not apply to
you.

Patents
The Magic Cap software is protected by the following patents: 5,611,031; 5,689,669; 5,692,187; and 5,819,306. Portions of
the Magic Cap technology are patent pending in the United States and other countries.

United States Government Restrictions
This product is “commercial item” as that term is defined at 48 C.F.R. 2.101 (OCT 1995) consisting of “commercial
computer software” and “Commercial computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (SEPT
1995) and is provided to the U.S. Government only as a commercial end item. Consistent with 46 C.F.R. 12.212 and 48
C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all U.S. Government End Users acquire this product only with those
rights set forth therein.

Icras, Inc.
955 Benecia Avenue Tel.: 408 530 2900
Sunnyvale, CA 94086 USA E-mail: info@icras.com

Fax: 408 530 2950
URL: http://www.icras.com/

mailto:info@datarover.com
http://www.datarover.com

Table of Contents

Chapter 1: Introduction . 7
Developing software packages .7

Microsoft Visual C++ . 8
Magic Cap Simulator . 8

Construction tools . 8
Inspector . 8

Bowser Jo . 8
Debugging tools . 9
Object Tools . 9

Magic Script . 9
Localization tools . 9

Chapter 2: Building Software Packages . 11
Overview of package development .12
Building a simple package . 12

How to clone a package . 12
How to create a new package .15
How to build a package . 17
How to test a package . 18

Troubleshooting . 20
Package Formats . 21

Simulator debug packages .21
Simulator release packages .21
MIPS packages . 21

Inside a Magic Cap package . 22
Object instance definition file .22
Class definitions . 23
Source code . 24
Makefile . 25

Customizing makefiles . 26
Default makefile . 26
Defining variables . 26
Using the Magic Internet Kit .27
Extra dependencies . 27

Modifying viewable objects with construction tools . 28
Icras, Inc. Confidential Guide to Development Tools iii

Chapter Table of Contents
Downloading a package to a storage card . 30
How to perform a cold boot .30
How to download a package .30
Downloading multiple packages .31

Chapter 3: Magic Cap Simulator . 33
Magic Cap Simulator menus . 33

File menu . 33
Edit menu . 34
Hardware menu . 34
Examine menu . 34
Discipline menu . 35
Testing menu . 35
Log menu . 37
Reset Tests menu . 37

Construction tools . 37
Turning on construction mode .38
The Magic Hat window . 40

Coupons . 41
Text coupons . 42

Stamps . 43
Components . 43

Buttons . 43
Switches . 44
Choices . 44
Text .44
Clocks . 44
Boxes . 44
Shapes . 44
Icons . 45

Colors . 45
Sounds . 46
Borders . 46
Text styles . 46
Shadows . 47
Extras . 47

Tool holder . 48
Authoring . 48

Tinker tool . 49
Move tool . 50
Copy tool . 50
Stretch tool . 50

Debugging with the Inspector .51
Inspector . 52

Dumping single objects . 54

Chapter 4: Bowser Jo . 55
Launching Bowser Jo . 56
iv Guide to Development Tools Icras, Inc. Confidential

Chapter Table of Contents
Using Bowser Jo . 57
Searching alphabetically . 57
Searching by string matching . 57

Chapter 5: Debugging Tools . 59
Debugging in Microsoft Visual C++ . 60

Creating a debug build . 60
Summary of Magic Developer toolbar commands . 60
Displaying and managing the contents of a package 61

Displaying package organization . 61
Managing project files . 63

Inserting a file . 63
Removing a file . 63
Creating a new makefile . 63
Opening a file . 63

Opening a copy of the log file . 64
Setting log file preferences . 65
Running Simulator tests . 66
Examining objects and indexicals . 67

About the object reference . 68
Viewing operation information . 69
Viewing class information . 69
Examining memory usage . 70

Examining memory clusters . 71
Examining heaps and non-relocatable memory . 72

Stepping into a dispatch call . 73
Custom debugging macros . 74

Breaking into the debugger . 75
Writing messages to the log file . 75

Debugging in GDB . 76
Launching GDB . 76
Examining objects with GDB . 77
The Magic Developer extensions to GDB . 78
Using the GDB online help . 79

Chapter 6: Object Tools . 81
Terminology overview . 82
Object syntax . 83
Class definition file . 83

Class definition syntax . 84
Inheritance . 85
Extra data . 86
Abstract classes . 87
Mixin classes . 87
Defining fields . 88
Defining attributes . 88
Defining operations . 89
Package globals . 90
Icras, Inc. Confidential Guide to Development Tools v

Chapter Table of Contents

 111
Defining simple intrinsics . 90
Overriding methods . 90
Method implementation . 91
Indexicals . 91

Exporting interfaces . 91
Example class definition file . 92
Instance definition file . 92

Object dumping . 93
Object hierarchy . 94
Field initialization statements .94

Object reference . 94
Indexicals . 95
Operation number . 95
Files . 95
long . 96
short . 96
byte . 96
Booleans . 96
Strings . 96
Fixed . 96
Hexadecimal data . 97
Extra data . 97
Pixels . 97
Dot . 97
Box . 97

Magic Script . 98
Editing scripts . 98
What a script looks like . 98
What a prototype looks like .98
Stack operations . 99
Comparisons . 101
Arithmetic and logical operations .101

Chapter 7: Package Localization . 103
Preparing packages for localization .103
Localization files . 104
Using phrase files . 104

Compiling with phrase files .104
Phrase file syntax . 105
Including another phrase file .105

Localizing text . 105
Creating a phrase file . 106
Translating the strings . 108

Modifying viewable objects . 109

Index .
vi Guide to Development Tools Icras, Inc. Confidential

1
Introduction

A Magic Cap software package is a collection of objects that perform a specific set
of functions. Magic Cap itself provides several built-in packages, including the
datebook, the name card file, the notebook, and the mail package. In addition,
Magic Cap provides a fertile environment to support third-party packages. This
guide describes how to use Magic Developer, a software development environment
for creating Magic Cap packages.

In this guide, we will discuss the process of developing packages for Magic Cap. To
use it effectively, you should be familiar with the following:

• C++ programming language
• Object-oriented programming
• Windows software development
• Operating a Magic Cap DataRover 840

Developing software packages
Software for Magic Cap is distributed in packages that contain objects for
performing tasks. Some packages are conventional applications with specific
purposes, such as electronic mail and personal finance. Other packages are sets of
objects required by a variety of applications in Magic Cap, such as user-interface
features like buttons and clocks.

Packages can vary according to their purpose and structure. Some special purpose
packages contain code to implement specific features, such as an inventory checker.
Other packages might not contain any code—they simply add objects to Magic Cap.
This second category of packages can include data objects such as stamps and sounds,
as well as other packages that benefit from Magic Cap’s rich set of user-interface
tools. Other packages may fall anywhere between these examples.
Icras, Inc. Confidential Guide to Development Tools 7

Developing software packages Chapter 1 Introduction
Microsoft Visual C++
Magic Developer is based on Microsoft Visual C++, an application development
environment for Windows software. You must install either the Professional Edition
or the Enterprise Edition of Microsoft Visual C++. Magic Developer extends the
Microsoft Visual C++ environment with tools for building and testing Magic Cap
packages. See Chapter 2, “Building Software Packages,” for more information.

Magic Cap Simulator
While developing Magic Cap packages, you’ll use a version of Magic Cap running
on the PC called the Magic Cap Simulator that lets you create, edit, and specify the
behavior of live objects graphically. This allows you to see and use packages much as
they will appear on the DataRover 840.

Magic Cap Simulator simulates a DataRover 840 and allows you to develop software
without having to move your package to an actual DataRover 840 every time you
make a change to your package, saving time in the development cycle.

Magic Cap Simulator is useful for two purposes. You can use it to run and test
packages with greater convenience than downloading the package into a DataRover
840. In addition, you can use it in the software development process to modify
objects and then dump them back as ASCII text in object definition files.

See Chapter 3, “Magic Cap Simulator,” for more information on how to use Magic
Cap Simulator to create and modify objects for your packages.

Construction tools
Typically, you’ll start creating your package in Magic Developer, then build it and
run it in the Magic Cap Simulator. In the Magic Cap Simulator, you can use the
tools and techniques available in construction mode to modify your package. In
construction mode, you can create new viewable objects by dropping them from the
Magic Hat, and then modifying them with the move, copy, and stretch tools. See
“Construction tools” on page 37 for complete information about construction
mode.

Inspector
The Magic Cap Simulator includes an object analyzer called the Inspector that you
use to examine objects at run-time. The Inspector lets you view the content of
objects and dump them to the log file. See “Inspector” on page 52 for more
information.

Bowser Jo
The complete collection of classes for developing Magic Cap packages is very
extensive. To help you navigate through these classes, the Software Development Kit
(SDK) includes Bowser Jo, a tool for viewing the Magic Cap class hierarchy that runs
in your web browser. See Chapter 4, “Bowser Jo,” for more information.
8 Guide to Development Tools Icras, Inc. Confidential

Chapter 1 Introduction Developing software packages
Debugging tools
Part of developing a Magic Cap package is the necessary process of finding and fixing
bugs. Magic Developer provides two debugging environments for Magic Cap
package development:

• Microsoft Visual C++ and the Magic Cap Simulator

• The GNU source-level debugger (GDB) and the DataRover 840

See Chapter 5, “Debugging Tools,” for more information on how to use the
debugging tools to develop Magic Cap packages.

Object Tools
Object Tools translate text descriptions of Magic Cap objects into live, graphical
representations of the objects. The Magic Cap Simulator Object Tools can also
reverse this operation, converting live objects back to their text representations.

Object Tools process two kinds of files, and most packages include at least one file
of each kind (in addition to one or more source files that are processed by
conventional compilers and assemblers). The first kind contains the descriptions of
any classes defined by the package; this is called a class definition file. The second
kind, called the instance definition file, contains descriptions of objects defined by
the package.

See Chapter 6, “Object Tools,” for more information on how to use Object Tools
to develop Magic Cap packages.

Magic Script
Magic Cap uses a simple but powerful scripting language called Magic Script to
provide a high-level way of arranging and connecting objects. Magic Script uses a
Java based model of execution. When you create your own packages, you may write
and edit Magic Script in any object definition file. For an example, see the sample
package TicTacToe.

Magic Script is most useful in coordinating user-interactions with viewable objects
like buttons. It is easier to write small scripts for these than to create the equivalent
object subclasses. From a performance perspective, the two approaches are
equivalent. See “Magic Script” on page 98 for more information.

Localization tools
In addition, Magic Developer has tools for localizing Magic Cap packages for
different languages.

See Chapter 7, “Package Localization,” for more information on how to use these
localization tools to develop localized versions of Magic Cap packages.
Icras, Inc. Confidential Guide to Development Tools 9

Developing software packages Chapter 1 Introduction
10 Guide to Development Tools Icras, Inc. Confidential

2
Building Software Packages

This chapter describes how to build packages with Magic Developer. First we’ll give
you an overview of the package development process. Then we’ll show you how to
build a simple Magic Cap package named HelloWorld, giving you a whirlwind tour
of the Magic Developer development environment. From there we’ll get more
specific about the different components that go into Magic Developer and what they
do.

Magic Developer contains a number of sample packages in addition to HelloWorld.
Look in the Samples folder in Magic Developer to see these packages. You can learn
something about them by looking at their source files and then building and running
them.
Icras, Inc. Confidential Guide to Development Tools 11

Overview of package development Chapter 2 Building Software Packages
Overview of package development
The Magic Cap Simulator provides an environment for constructing and testing
packages on your PC. The fastest way to develop packages is to take advantage of the
simulator, as follows:

1. Create a package using the simulator as the target.

2. Run the package in the simulator to construct it.

3. Debug the package in Microsoft Visual C++.

4. After the package is working, create a build using the DataRover 840 as the target.

5. Download the package to the DataRover 840 and finish debugging it there.

Magic Developer uses the standard Microsoft Visual C++ compilers and linkers to
build packages, as well as a set of tools called Common Tools (common across all
platforms and targets). The common tools include the Class Compiler, Object
Compiler, X-File Linker, and the Package Builder.

When you target the Windows simulator, the code and data for a package are built
into a dynamic link library (DLL). The Common Tools produce a frozen package
which is loaded along with the DLL. When you target any other platform, the code
and data are stored inside the frozen package file. See “Package Formats” on page 21
for more information about frozen packages.

Building a simple package
Let’s clone one of the sample packages delivered with Magic Developer and use the
clone to learn how to build a package. Cloning an existing package is usually a good
way to create a new package because the required source files are copied to a new
directory for you.

How to clone a package
Here’s a list of steps for cloning a very simple Magic Cap package.

1. Launch Microsoft Visual C++ and choose File New.

The New dialog box appears.
12 Guide to Development Tools Icras, Inc. Confidential

Chapter 2 Building Software Packages Building a simple package
2. Select the Projects tab, if it is not already selected.

3. Enter the following values, then click OK:

The Package AppWizard appears.

Option Value

Left Panel Magic Cap Package AppWizard

Project name MyHelloWorld

Location The samples subdirectory under the directory in which Magic
Developer is located.
Icras, Inc. Confidential Guide to Development Tools 13

Building a simple package Chapter 2 Building Software Packages
4. Check Clone an existing package, then select HelloWorld in the Packages list and
click Finish.

The New Project Information dialog box appears.

5. Click OK.

The MyHelloWorld workspace opens.

6. Choose File Close Workspace and close the MyHelloWorld workspace without
saving it.

You actually use the MyHelloWorldPackage workspace to build MyHelloWorld,
so this workspace is not necessary.

7. If the Microsoft Visual C++ Workspace Viewer is open, close it.

You cannot open files in a Magic Developer project from the Microsoft Visual
C++ Workspace Viewer; instead, you use the Magic Developer Package Viewer.
See “Displaying and managing the contents of a package” on page 61.
14 Guide to Development Tools Icras, Inc. Confidential

Chapter 2 Building Software Packages Building a simple package
How to create a new package
Here’s a list of steps for creating a new Magic Cap package without cloning

1. Launch Microsoft Visual C++ and choose File New.

The New dialog box appears.

2. Select the Projects tab, if it is not already selected.

3. Enter the requested values as you do when cloning a package, then click OK.

The Package AppWizard appears.

4. Check Use Package Wizard, then specify the location of the main package entry
point and click Next.

The following dialog box appears.
Icras, Inc. Confidential Guide to Development Tools 15

Building a simple package Chapter 2 Building Software Packages
5. Enter contact information for users, then click Next.

The following dialog box appears.

6. Specify whether you want to include support for a multi-threaded package,
animation, or the Magic Internet Kit, then click Finish.

Note that the last option which allows you to select access to extended interfaces
is an advanced option in most cases should not be selected. Ensure that the
selection is set to No.

The New Project Information dialog box appears.

7. Click OK.

Microsoft Visual C++ creates a set of files you can use as a starting point for
creating a new package, and a new project workspace called PackageName.dsw
opens.

8. Close the workspace as you do when cloning a package, and open the workspace
called PackageNamePackage .dsw.

9. If the Microsoft Visual C++ Workspace Viewer is open, close it also.

You cannot open files in a Magic Developer project from the Microsoft Visual
C++ Workspace Viewer; instead, you use the Magic Developer Package Viewer.
as described in “Displaying and managing the contents of a package” on page 61.
16 Guide to Development Tools Icras, Inc. Confidential

Chapter 2 Building Software Packages Building a simple package
How to build a package
When you build a package, you need to specify the following information:

• The device upon which the build will run.

Win32 targets the Magic Cap Simulator.

Apollo targets the DataRover 840.

• The type of build.

Debug builds contain full symbolic information for debugging purposes.

Release builds are smaller and faster than debug builds because they do not
contain symbolic information, which means you cannot use them for debugging.

• The country in which the build will be used.

USA and Japan are both supported in this release of Magic Developer. See
Chapter 7, “Package Localization,” for more information.

Let’s create a debug build of the cloned HelloWorld package, targeting the Magic
Cap Simulator. Here’s a list of steps for building your cloned package.

1. Choose File Open Workspace, navigate to the MyHelloWorld subdirectory
underneath MagicDeveloper\samples, then select MyHelloWorldPackage.dsw
and click Open.

The MyHelloWorldPackage workspace is now open in Microsoft Visual C++.

2. Choose Build Set Active Configuration to specify the device target, the type of build,
and the localization country.

The Configurations dialog box appears.

3. Choose MyHelloWorldPackage—Win32 USA Debug and click OK.

The Set Active Configuration dialog box closes.

4. Choose Build Build MyHelloWorld.dll or press F7.

Microsoft Visual C++ builds the package.
Icras, Inc. Confidential Guide to Development Tools 17

Building a simple package Chapter 2 Building Software Packages
How to test a package
You can test the MyHelloWorld package directly within Microsoft Visual C++ by
entering the Debugger. To test your newly cloned package:

1. The first time you test a package it will be necessary to establish the executable
and package execution environment. You will only have to do this one time:

a. If you have not already done so, ensure that the default configuration for your
package is "Win32 USA Debug". If this is not the default configuration,

select the Build Set Active Configuration and set the default as specified.

b. Select Project Settings and click the Debug tab.

c. In the "Executable for debug session" text box you need to point to the Magic
Cap Windows Simulator. Do so by clicking the button on the right and
navigating to:

<installation directory>\debug\win32\MagicCap-USA.exe

where <installation directory> is where you installed MagicDeveloper.

d. In the "Program arguments" text box you need to tell the simulator where to
find your package image file. Do so by typing the following:

/install win32\debug\usa\<package name>.package

where <package name> is the name of your package, and then click OK. For
example, assuming that you created a package named MyHelloWorld, the
command line would be:

/install win32\debug\usa\MyHelloWorld.package

e. Select File Save Workspace to save your changes. Below is a sample of the result
when MagicDeveloper is installed in C:\MagicDeveloper.
18 Guide to Development Tools Icras, Inc. Confidential

Chapter 2 Building Software Packages Building a simple package
2. Choose Build StartDebug Go or press F5.

Microsoft Visual C++ launches the Magic Cap Simulator and loads your package.
The MyHelloWorld package appears as a door labelled AhoyWorld in the
Hallway.

Note: If you are unable to run your package, see “Troubleshooting” on page 20.

3. Click the AhoyWorld door.

The Magic Cap Simulator displays a black box labelled “Yo, World.” The black
box plays a sound when you touch it.

4. Choose File Exit in the Magic Cap Simulator to close the simulator and the
package.

See Chapter 5, “Debugging Tools,” for more information on debugging and testing.
Icras, Inc. Confidential Guide to Development Tools 19

Building a simple package Chapter 2 Building Software Packages
Troubleshooting
If you are unable to run a package using the information in “How to test a package”
on page 18, or if Microsoft Visual C++ asks you for the name of an executable to
load, your debug project settings are not correct. Follow these instructions to set up
your project:

1. In Microsoft Visual C++, choose Project Settings.

The Project Settings dialog box appears.

2. Select the Debug tab.

The Debug panel appears.

3. Enter the following value in the Executable For Debug Session field:

%SDKROOT%\debug\win32\MagicCap-USA.exe

where %SDKROOT% represents the name of the directory in which you installed
Magic Developer.

4. Enter the following value in the Program Arguments field:

/install win32\debug\usa\ PackageName.package

You should now be able to run your package under the debugger as described in
“How to test a package” on page 18.
20 Guide to Development Tools Icras, Inc. Confidential

Chapter 2 Building Software Packages Building a simple package
Package Formats
Magic Cap packages have a specific format called the Frozen Objects Format. This
format divides a package into sections or attributes, containing the following pieces:

• Code

• Global data

• Package class and object definitions

• Exported interfaces (classes/operations/indexicals)

• Imported interfaces (classes/operations/indexicals)

Simulator debug packages
For debug packages which target the simulator, Magic Developer builds the code
into a DLL. To facilitate debugging, simulator debug packages do not contain the
DLL; instead, they contain a place holder within the code attribute that tells the
simulator to load the DLL from the same directory.

Because the DLL and package are separate, you typically must deliver two files to
distribute a simulator debug package:

• PackageName.package

• PackageName.DLL

To build a simulator debug package as a single file, remove the -separate-
library switch from the command line passed to the BuildPackage command

Simulator release packages
For release packages which target the simulator, Magic Developer also creates a DLL;
however, the DLL is built into the code attribute. At runtime, the simulator writes
the DLL into a temporary file and loads it from there. Since the DLL contains both
the code and the global data for the package, simulator packages do not have a global
data attribute.

MIPS packages
For packages which target a MIPS platform, Magic Developer builds the code into
an ELF executable. The code and data is extracted from this executable and placed
in the appropriate frozen package attributes. Consequently, a DataRover 840
package is always a single file (PackageName.package) which you can download or
mail to a device.
Icras, Inc. Confidential Guide to Development Tools 21

Inside a Magic Cap package Chapter 2 Building Software Packages
Inside a Magic Cap package
Let’s examine the contents of the folder MyHelloWorld . You will find the following
four files:

• Objects.odef . This is the object definition file. It defines the static objects for
the package.

• MyHelloWorld.cdef . This is a class definition file. It defines the classes that are
unique to the package. MyHelloWorld defines a single class named Greeter .

• MyHelloWorld.cpp . This file contains C++ source code to the Greeter_Draw
method for the package’s Greeter class.

• MyHelloWorld.make . This is a Microsoft Visual C++ build script that is
generated automatically.

In addition, you will find the following sample phrase files used for localizing the
package (see the localization section in the Magic Cap SDK documentation for more
information):

• France.Custom.Phrases
• France.Package.Phrases
• Japan.Custom.Phrases
• Japan.Package.Phrases
• Japan.Resizing.Phrases
• USA.Custom.Phrases
• USA.Package.Phrases

Object instance definition file
The file Objects.odef contains a series of static object instance definitions that the
Object Compiler uses to build the objects for a Magic Cap package. Object instance
definition files use the .odef suffix.

Your package must include at least one object instance definition file to be compiled
by the Object Compiler.
22 Guide to Development Tools Icras, Inc. Confidential

Chapter 2 Building Software Packages Inside a Magic Cap package
Here’s an example of an instance definition taken from Objects.odef in the
MyHelloWorld folder:

instance SoftwarePackageContents contents 'MyHelloWorld';
 dateCreated: 0;
 timeCreated: 0;
 dateModified: 0;
 timeModified: 0;
 autoActivate: true;
 installationList: (ObjectList installationList);
 author: iGeneralMagic;
 publisher: iGeneralMagic;
 versionText: nilObject;
 helpOnObjects: (ObjectList helpForObjects);
 sceneIndexicalList: nilObject;
 stackIndexicalList: nilObject;
 startupScene: nilObject;
 startupItem: nilObject;
 creditsScene: nilObject;
 logo: iTurkey;
responseCardStationery: iDefaultStationery;
 hidden: false;
 dontDeactivate: false;
end instance;

Each instance definition includes three parts:

• The instance header—a single line that consists of the keyword instance
followed by the name of the object’s class, followed by a symbolic tag that must
be unique for this package, followed by an optional object name which may
contain spaces and is enclosed by single quotes, ending with a semicolon. The
unique tag for SoftwarePackageContents must be contents .

• The body with one or more lines that list the object’s fields and their values.

• The instance footer—a single line that consists simply of the keywords end
instance;

A typical instance definition file will have a series of object instance definitions See
“Instance definition file” on page 92 for more information about instance definition
files and their syntax.

Class definitions
If your package includes any new classes, as most packages do, you must define them
in a class definition file to be compiled by the Class Compiler. A class definition file
is a text file that consists of one or more class definitions. Typically, a package’s class
definition file has the same name as the package, plus a .cdef suffix.

Here’s an example of a class definition taken from the class definition file in the
MyHelloWorld package, followed by a discussion of its contents:

define class Greeter;
inherits from Viewable;
overrides Draw;

end class;

This class definition includes four parts:
Icras, Inc. Confidential Guide to Development Tools 23

Inside a Magic Cap package Chapter 2 Building Software Packages
• The class header—one or more lines that consist of the keywords define class ,
followed by the name of the new class, optionally followed by other information
about the class.

• The superclass designation—the keywords inherits from followed by the
name of the class’s immediate superclass.

• The body—one or more lines that list the class’s fields, operations, and attributes.
Overridden methods are specified with overrides .

• The class footer—a single line that consists of the keywords end class;

See “Class definition file” on page 83 for more information about class definition
files and their syntax.

Source code
If your package includes any new classes, you must define the code that implements
the methods of the new classes in C++ files. You can arrange your source code in any
collection of files. Microsoft Visual C++ and Magic Developer require the .cpp
suffix.

If a package has only one source file, it usually has the same name as the package plus
a .cpp suffix. Magic Developer requires that your package have at least one .cpp
file; if your package has no code, this file may just be an empty file.

Following is an example of a C++ source file from the MyHelloWorld package:

#include "MagicCap.h"
#include "Debug.h"

#include "MyHelloWorld.xh"
#include "MyHelloWorld.xph"

#undef CURRENTCLASS
#define CURRENTCLASS Greeter

/* --
Here's the Draw() routine, which only needs to draw the content area, in
this case, it just fills a box. This routine is called by the system when
our object needs to be drawn.

*/

Method void
Greeter_Draw(Reference self)
{

Box ourContentBox;
ulong color;

/* Get an rgb color value from our viewable */
color = PartColor(self,

Highlighted(self) ? partAltContent : partContent);
/*
Now, get contentBox and pass it and the color we want and the transfer
mode to FillBox().
*/
ContentBox(self, &ourContentBox);
FillBox(CurrentCanvas(), CurrentClip(), &ourContentBox, color,

pixelDither | pixelCopy);
}

24 Guide to Development Tools Icras, Inc. Confidential

Chapter 2 Building Software Packages Inside a Magic Cap package
#undef CURRENTCLASS

Although most of this file is written in standard C++, you should notice these vitally
important special elements:

• This file uses #include statements to include a number of files provided with
Magic Developer; see the sample packages for the exact list of files to be included.
You might also have your own header files that would be referenced with an
include statement.

• The file includes a statement that specifies the class (#define CURRENTCLASS
Greeter). This statement is required, and the class name must match your class
name exactly, including case. If they don’t match, your package may not compile.
If you define more than one class, make sure that you set the class name correctly
for each method. You can have as many of these class specifiers as you need,
switching from one class to another before each method if necessary.

• Each function declaration for a method begins with the keyword Method .

• In Magic Cap, each method’s name is the name of the class, followed by an
underscore, followed by the operation name (as defined in the operation
statement in the class definition file). The Class Compiler uses this convention to
match operations to C++ functions. Of course, your source code can have
functions that are not methods, and there are no naming restrictions on them.

• The first parameter to every object method is an object reference, and the first
parameter to every class method is a class reference. For convenience, this
parameter is never declared in the class definition file. However, it must be
included when you declare the methods in the source files, or the compiler won’t
know about it. See “About the object reference” on page 68 for more
information.

Makefile
Microsoft Visual C++ uses the nmake utility to organize the software build process.
The make description file, or Makefile, contains a list of instructions for building a
software module. Magic Developer uses this system for building Magic Cap
packages.

The makefile contains Microsoft Visual C++ commands that build your package. If
you create a new package by cloning an existing package, Microsoft Visual C++
creates a makefile that you can use as a template. You can modify this makefile, if
necessary, as you add files to your project. See “Customizing makefiles” on page 26
for more information.
Icras, Inc. Confidential Guide to Development Tools 25

Customizing makefiles Chapter 2 Building Software Packages
Customizing makefiles
The makefiles generated by the package wizard are suitable for applications which
do not include libraries or which do not import interfaces from other packages. If
you wish to do any of these things, you will need to customize your makefile.

Default makefile
The makefiles generated by the package wizard, such as all the sample makefiles, are
created in the following form:

Magic Developer Generated Makefile
** DO NOT EDIT **

PACKAGE_NAME = Temp

CDEF_X_FILES = \
$(INTERMEDIATE_DIR)\Temp.cx \
$(INTERMEDIATE_DIR)\TempIndexicals.cx \
#

ODEF_X_FILES = \
$(INTERMEDIATE_DIR)\Objects.ox \
#

CPP_O_FILES = \
$(INTERMEDIATE_DIR)\Temp.o \
#

!include $(SDKROOT)\scripts\packagewizard\MakePackage

Defining variables
Each package makefile defines a number of variables which are used by the
MakePackage file to build the package. For example, you can define variables that
specify a directory to search for .cdef.x/.h files as follows:

!ifdef DEBUG
CAP_TOOL_INCLUDES= -I ..\ExportSample\$(TARGET)\Debug

!else
CAP_TOOL_INCLUDES= -I ..\ExportSample\$(TARGET)\Release

!endif

In the previous example, the ImportSample.make makefile (in the samples
directory under the directory in which Magic Developer is installed) imports an
interface from the ExportSample package, and therefore needs to include
ExportSample.cdef.x from the ExportSample directory.

You can also use variables in a makefile to specify which C++ files will be built with
precompiled headers:

• All the files in CPP_O_FILES are built with precompiled headers. These files have
the extension .o .

• All the files in CPP_O_FILES_NP are built without precompiled headers. These
files have the extension .no .
26 Guide to Development Tools Icras, Inc. Confidential

Chapter 2 Building Software Packages Customizing makefiles
By default, the package wizard puts all the files in the CPP_O_FILES group. You
must move any files you want to build without precompiled headers to the other
group.

For more variables you can define in your makefiles, see the comments in the
MakePackage file in the scripts\packagewizard directory under the directory in
which Magic Developer is installed.

Using the Magic Internet Kit
The Magic Internet Kit is a complete development kit for creating communicating
Magic Cap applications. You can customize your makefile to provide access to the
Magic Internet Kit by adding the following line:

USE_MAGIC_INTERNET_KIT = 1

The CujoTerm sample application provides an example of using the Magic Internet
Kit.

For more information about the Magic Internet Kit, refer to the guide entitled,
“Magic Internet Kit”.

Extra dependencies
It is also possible to specify extra dependencies for a makefile. For example, the
ImportSample.make makefile in the samples directory under the directory in
which Magic Developer is installed uses extra dependencies.

The ImportSample package depends on ExportSample because a build of
ImportSample for a specific target must be conditioned by a build of ExportSample
for the same target. This relationship is expressed in the makefile as follows:

EXTRA_DEPENDENCY = ..\
 $(SDKROOT)\samples\ExportSample\$(LOCALE)\ExportSample.package
#

$(SDKROOT)\samples\ExportSample\$(LOCALE)\ExportSample.package:
 cd $(SDKROOT)\samples\ExportSample
 nmake /f MakeExportSamplePackage.mak all
 cd $(SDKROOT)\samples\ImportSample

In this example, the following lines specify that the ExportSample package is a
dependency of ImportSample:

EXTRA_DEPENDENCY = ..\
 $(SDKROOT)\samples\ExportSample\$(LOCALE)\ExportSample.package
#

The following lines in this example define the rule to build the ExportSample
package:

$(SDKROOT)\samples\ExportSample\$(LOCALE)\ExportSample.package:
 cd $(SDKROOT)\samples\ExportSample
 nmake /f MakeExportSamplePackage.mak all
 cd $(SDKROOT)\samples\ImportSample
Icras, Inc. Confidential Guide to Development Tools 27

Modifying viewable objects with construction tools Chapter 2 Building Software Packages
Modifying viewable objects with construction tools
Objects that make a visual appearance are called viewable objects. They are the
visible building blocks of the user-interface. After you build and run your package
with Magic Cap Simulator, you’ll want to modify the package’s appearance and store
the results back into the package’s source code.

Modifying viewable objects has two purposes: to refine the visual appearance of the
elements of a user-interface, and to assist in localization.

You will use the Magic Cap Simulator to modify viewable objects. Here’s how to do
it:

1. Launch the Magic Cap Simulator and the MyHelloWorld package from within
Microsoft Visual C++.

You can launch the Magic Cap Simulator together with a package you’ve built by
choosing Build StartDebug Go or pressing F5. This runs the package in the current
workspace, as described in “Building a simple package” on page 12.

2. Turn on construction mode.

a. Go to the Hallway, find the Controls door and click it.

b. Click general.

Two groups of check boxes appear.

c. Turn on the check box for construction mode.

The Stamper icon at the bottom of the Magic Cap screen changes to a Magic
hat icon to indicate that you are in construction mode. This means that some
Magic Hat objects have extra features, particularly for changing the
appearance of other objects.

3. Return to the MyHelloWorld package.

a. Click the step-back pointer in the top right corner of the Magic Cap screen.

The Controls scene appears.

b. Click the step-back pointer again.

The Hallway appears.

c. Go down the Hallway to the door named AhoyWorld, then click it to enter.

The AhoyWorld scene appears.
28 Guide to Development Tools Icras, Inc. Confidential

Chapter 2 Building Software Packages Modifying viewable objects with construction tools
4. Create a color coupon and apply it to a viewable object.

a. Click the Magic Hat at the bottom of the screen.

b. Click the category box named colors.

A series of different shades will appear for you to select from.

c. Select a color and apply it to a viewable object.

When you click a color to select it, the Magic Hat window closes and the
color remains in a special viewable called a coupon. You can apply this
coupon to another viewable object by dragging the coupon over the object
and releasing it. Magic Cap changes an object’s color to indicate when you
are over an object which can accept the color coupon.

5. Dump the modified objects from the Magic Cap Simulator.

a. Choose Examine Dump Package in the Magic Cap Simulator.

Note: If you don’t see Examine in the menu bar, choose File Show Development Tools.
That should display extra menu items used for development.

A dialog box lets you specify the location and name of a file.

b. Specify the location and name of the dump file, then click Save.

c. Quit the Magic Cap Simulator and return to Microsoft Visual C++.

6. Import the modified objects into Magic Developer by doing either of the
following:

• Delete Objects.odef and rename the dump file to Objects.odef .

• Open the dump file and Objects.odef , then copy each object instance from
the dump file into Objects.odef .

This creates a new version of your instance definition file that includes the color
change for the Greeter object. Make sure you merge any comments from your
original .odef file into your new file.

7. Save the files and rebuild the package.

When you do this you should notice that the box in the MyHelloWorld scene has
the new color. You can continue to modify your package by changing the source
or by rebuilding and returning to the Magic Cap Simulator at any time.

By dumping from the Magic Cap Simulator and then importing dumped objects to
Magic Developer, you can move back and forth between the two environments.

When using the Magic Cap Simulator, you can do a lot more than just modify
existing objects. You can add new objects from the Magic Hat. Then, when you
dump and import the dumped objects, the newly added objects will be in your
instance definition file.
Icras, Inc. Confidential Guide to Development Tools 29

Downloading a package to a storage card Chapter 2 Building Software Packages
You can also dump individual objects that you create or modify in the simulator to
merge into Ojects.odef . See “Object dumping” on page 93 for more information.

Downloading a package to a storage card
To install your package onto a device, you normally download it to a storage card in
a DataRover 840. The package is stored on the card as a raw byte stream that can be
read by the DataRover 840 during either a cold or a warm boot.

Optionally, you can use the WinPCLink tool to download a package to a storage
card. Refer to the WinPCLink documentation for instructions.

How to perform a cold boot
You need to perform a cold boot of your DataRover 840 to download a package and
to perform other tasks such as debugging with GDB. Follow these steps to perform
a cold boot of your DataRover 840:

1. Turn off the device, remove both batteries, and unplug the power cord and the
serial cable.

2. Wait a few seconds to make sure the memory is reset.

3. Plug in the power cord and the serial cable, replace the batteries, then turn on the
device.

How to download a package
Use the following steps to download a package to a storage card:

1. In Magic Developer, build your package with an Apollo build target.

Magic Developer creates both the package and also the file download.bat that
you use to download the package.

2. In the Control Panel of your PC, confirm that the MagicPort environment
variable correctly identifies the serial port you are using.

• In Windows NT and Windows 2000, set the environment variable in the
Control Panel.

• In Windows 98, set the environment variable in the autoexec.bat file.

For example, if the DataRover 840 cable is attached to com2 on your PC, the
value of MagicPort should be “com2”.

3. Place a storage card in the DataRover 840 to receive the package.

4. Enter Monitor mode by cold booting while holding down the Option button.

The screen remains blank; however, the device is now on in Monitor mode.
30 Guide to Development Tools Icras, Inc. Confidential

Chapter 2 Building Software Packages Downloading a package to a storage card
5. Make sure that the cable connects the serial port of your PC to the Magic Bus
port of the DataRover 840.

6. Open a command prompt window, change to the directory that contains your
package, then run the batch file download.bat to copy the package to the card
in your DataRover 840.

The screen displays messages such as the following:

writing 0x464BC bytes at 0x24000000, estimated time: 44.99 seconds
transfer completed, checking errors...
actual time: 33.23 seconds

7. Cold boot the DataRover 840 without holding down the Option button.

Magic Cap reads the package into main RAM and displays the message “Do you
want to set up the storage card...”

8. Do either of the following:

• Choose don’t if you want to use the same card to load the package onto other
devices.

• Choose set it up if you want to use the card for other purposes.

9. After the cold boot has completed, power down the device and remove the storage
card.

If you do not remove the card, the package is read into main RAM again each
time you boot.

Downloading multiple packages
Occasionally you develop multiple packages which work together, such as the
ExportSample and ImportSample packages in the samples directory. When you are
working in the simulator, you can load both packages manually in the required
order. When you are downloading them to a DataRover 840, however, you must
concatenate the packages so they load onto the device at the same time.

To concatenate packages, use the concat utility provided with Magic Developer.
For example, to concatenate the ExportSample and ImportSample packages:

concat ..\ExportSample\apollo\Release\USA\ExportSample.package
apollo\Release\USA\ImportSample.package x

move x apollo\Release\USA\ImportSample.package

You may then download the combined import sample package file to the DataRover
840 using the download batch file described in “How to download a package” on
page 30.
Icras, Inc. Confidential Guide to Development Tools 31

Downloading a package to a storage card Chapter 2 Building Software Packages
32 Guide to Development Tools Icras, Inc. Confidential

3
Magic Cap Simulator

The Magic Cap Simulator is a development version of Magic Cap that runs as a
Windows application. It has special features that are not available in the version of
Magic Cap that runs on DataRover 840s. Most of these features are available from
items in the simulator menu bar. Others, like construction tools, are available within
the Magic Cap Simulator.

Magic Cap Simulator menus
This section describes the menus and menu items found in the Magic Cap
Simulator.

File menu
Menu item Description

Open Copy of Package Displays a dialog box that lets you navigate to a
package and open it.

Show/Hide Development Tools Shows or hides the Examine, Discipline, Testing,
Log, and Reset Tests menus.

When you hide the development tools, Magic
Developer also ignores Assert and Complain
macros. See “Custom debugging macros” on
page 74 for more information. In addition, Magic
Developer does not display “Method not found”
messages when you send an invalid message to
an object.

Exit Quits the Magic Cap Simulator.
Icras, Inc. Confidential Guide to Development Tools 33

Magic Cap Simulator menus Chapter 3 Magic Cap Simulator
Edit menu

Hardware menu

Examine menu

Menu item Description

Cut If there’s a text selection, cuts the selected text
and places it on the Windows clipboard.

If the tote bag contains a stamp, cuts the stamp
and places it on the Windows clipboard.

Copy If there’s a text selection, makes a copy of the
selected text on the Windows clipboard.

If the tote bag contains a stamp, copies the stamp
and places it on the Windows clipboard.

Paste Pastes the contents of the Windows clipboard into
Magic Cap Simulator. You can paste Windows
text, images, sounds, and fonts.

Menu item Description

Com1 set to Serial/
Com1 set to Modem/
No need to toggle port

Displays the status of the Com1 port.

Enable/Disable Modem Allows Magic Cap to use a modem plugged into
your PC. After selecting this item you may need
to quit and restart Magic Cap before it will start
using the modem. Note: not all modems are
compatible with Magic Cap.

New Card in Simulated Slot 1... Simulates inserting a new RAM card into slot 1.
The title bar of the simulator indicates that a new
card is installed.

Insert Card into Simulated Slot
1...

Displays a dialog box that lets you navigate to a
simulated RAM card and insert it into slot 1.

Eject Card from Simulated Slot
1

Ejects the simulated RAM card in slot 1.

New Card in Simulated Slot 2... Simulates inserting a new RAM card into slot 2.
The title bar of the simulator indicates that a new
card is installed.

Insert Card in Simulated Slot
2...

Displays a dialog box that lets you navigate to a
simulated RAM card and insert it into slot 2.

Eject Card from Simulated Slot
2

Ejects the simulated RAM card in slot 2.

Connect/Disconnect Simulated
Phone Line

Simulates connecting a telephone line. This item is
used primarily for testing the Phone line
connected window.

Connect/Disconnect Simulated
Hardware Keyboard

When a hardware keyboard is connected to the
DataRover 840, the on-screen keyboard doesn’t
appear automatically when Magic Cap expects
you to type text.

Start with 2 MB Additional RAM Simulates having additional main memory. After
selecting this item you must quit and restart
Magic Cap.

Power On/Off Simulates toggling device power switch.

Force Warm Reset Simulates resetting device (without removing
batteries).

Menu item Description

Show/Hide Inspector Shows or hides the object inspector.

Dump Inspector Target Writes text description of inspected object to the
log file.
34 Guide to Development Tools Icras, Inc. Confidential

Chapter 3 Magic Cap Simulator Magic Cap Simulator menus
Discipline menu

Testing menu

Dump Inspector Target Deep Writes text description of inspected object and
objects referred to by its fields (except weak
fields) to the log file.

Dump Package Writes text description of all objects and indexicals
in the current package to the log file.

Can Move/Copy/Stretch
Everything

Allows all viewable objects to be moved, copied,
and stretched regardless of their individual flag
settings.

Menu item Description

Validate Inspector Target Calls Validate method for the inspected object.

Validate Package Calls Validate method for all objects in the current
package.

Validate System Calls Validate method for all system objects.

Validate System and Active
Packages

Calls Validate method for all system and package
objects.

Faster Validates Tells the simulator not to run the longer, more
thorough validations

Start/Stop Leak Checking Enables/disables Magic Cap’s storage leak detector.

Require Card/Form Alignment Enables/disables a complaint in the Simulator that
will fire when it detects cards and forms that are
not aligned.

Require Inherited Calls If this item is checked, Magic Cap executes a user
break every time an overridden method executes
without calling its inherited implementation.

Require View Cache Coherency Checks the Magic Cap view cache for consistency.
This item is used internally by Icras, Inc..

Menu item Description

Go To TestSite Scene Shows the Magic Cap TestSite scene. This scene
and most of the items in this menu are used
internally by Icras, Inc..

Execute Standard System Test Performs the Magic Cap standard system test.

Show Testing Timing Data Causes the Simulator to collect a list of times for
the various test suites.

Start/Stop Journaling Starts or stops recording a journal of Magic Cap
actions which can be replayed later.

Present/Retract Sample
Announcements

Creates or removes several announcements to test
the announcement carousel.

Simulate Device Contrast Simulates the grays used on personal DataRover
840 LCD screens. You should set your monitor to
at least 16 grays to use this feature.

Place Fried Egg in Name Bar It’s a long story.

Simulate Multiple Services Simulates registering for multiple electronic mail
services to test features such as Collect from:
window.

Fill Memory Simulates filling up all memory.

Return Memory to Normal Ends simulation of full memory.

Collect Garbage Initiates system level garbage collection right away
instead of waiting for the times that it would
normally occur. Any garbage that is collected is
listed in the log file. This can be useful for finding
memory leaks during package development.

Menu item Description
Icras, Inc. Confidential Guide to Development Tools 35

Magic Cap Simulator menus Chapter 3 Magic Cap Simulator
Send Package Displays a dialog box that lets you select a package
and e-mail it.

Menu item Description
36 Guide to Development Tools Icras, Inc. Confidential

Chapter 3 Magic Cap Simulator Construction tools
Log menu
Check a command on the Log menu to enable Magic Cap to write that type of
information to the log file.

Reset Tests menu
The commands on the Reset Tests menu simulate a DataRover reset during a critical
operation, such as renumbering. These tests are typically for internal use only.

Construction tools
Building a package with Magic Developer involves spending part of your
development time modifying objects within Magic Cap. Magic Cap provides two
operating modes. End users work in the default normal mode, where the DataRover
840 behaves in the manner described by the user documentation. Developers work
in construction mode, which gives you enhanced control over objects in the
interface.

In construction mode, you can use construction tools to refine the appearance of
objects by changing their size, placement, color, and other attributes. Construction
tools help you assemble and modify the raw materials supplied by classes and static
objects.

Construction mode behaves differently in a Magic Cap DataRover 840 and in the
Magic Cap Simulator. You should use construction mode in the Magic Cap
Simulator, because it provides additional tools for developers not found on a
DataRover 840. The following sections show you how to turn on construction mode
and use the Magic Cap construction tools.

Menu item

Encodings

Encoding Details

Communication Details

Garbage Collection

Redraws

Text Formatting

CRCs

Idles

Search

Copy Engine

Log Output to Debugger

Scheduler

Actors

Current Actors

Actor Timings

Screen Update Timings

Semaphores

Semaphore Details

Uncaught Exceptions
Icras, Inc. Confidential Guide to Development Tools 37

Construction tools Chapter 3 Magic Cap Simulator
Turning on construction mode
To turn on construction mode:

1. Go to the Hallway, find the Controls door and click it.

A group of buttons appears.

2. Click general.

Two groups of check boxes appear.

3. Turn on the check box for construction mode.

The Stamper icon at the bottom of the Magic Cap screen changes to a Magic Hat
icon to indicate that you are in construction mode.

Turn on the
construction mode
check box...

...and the Stamper icon
changes to the Magic
hat
38 Guide to Development Tools Icras, Inc. Confidential

Chapter 3 Magic Cap Simulator Construction tools
To display the construction tools any time you are in construction mode, click the
Magic Hat:

Some of the changes you’ll see in construction mode include the following:

• The Magic Hat replaces the Stamper at the bottom of the screen. The Magic Hat
is a combined catalog and storehouse of objects. In it you’ll find boxes, text fields,
controls, and lots of coupons for modifying viewable objects on the screen. The
Magic Hat window also contains the original contents of the Stamper window.

• The Tool holder at the bottom of the screen contains additional construction
tools.

When you turn on construction mode in the manner described above, you are
changing the mode until you either exit the simulator or return to normal mode
again. Instead of turning on construction mode, you can also access the Magic Hat
window temporarily to perform a single operation.

To access the Magic Hat window for a single operation:

1. Click the Stamper icon to open.

The Stamps window appears.
Icras, Inc. Confidential Guide to Development Tools 39

Construction tools Chapter 3 Magic Cap Simulator
2. Hold down the Control key and click the title bar of the Stamps window.

The Magic Hat window appears.

After you make a choice and use it, the Magic Hat window disappears. You remain
in normal mode the entire time, and the Magic Hat icon does not replace the
Stamper.

The Magic Hat window
The Magic Hat window is arranged into eight categories, as shown in the illustration
in “Turning on construction mode” on page 38. If you click one of the category
boxes, Magic Cap displays the tools for that category in the window. For example,
clicking the Stamps category displays the contents of the original Stamper.

The window for some categories also displays a chest of drawers you can use to select
different types of tools in that category. For example, the drawers in the Components
category let you choose buttons, switches, choices, or text tools.

To dispense a stamp or other object from one of the categories, click it. The Magic
Hat window closes, and a copy of the object is placed in the scene. If the object is an
intangible attribute like a color, Magic Cap provides a temporary container called a
coupon to hold it until you apply it to something.
40 Guide to Development Tools Icras, Inc. Confidential

Chapter 3 Magic Cap Simulator Construction tools
To dispense more than one object from a category, hold down the Control key and
click an object. The object falls out of the Magic Hat into the scene behind the
window, and the window remains open. If you let go of the Control key and click
another item, the object is deposited in the scene and the Magic Hat window closes.

When there are too many objects to fit in a chest of drawers, a choice box at the
bottom of the chest lets you choose from additional sets of drawers. For example, if
you select the more choice in the Components window, you’ll see the following
drawers:

Coupons
Coupons hold intangible attributes from the Magic Hat, such as colors and borders,
that you can apply to viewable objects. When you drag the coupon to an object that
accepts it, the object displays that attribute.

To use a coupon:

1. Click the Magic Hat icon.

The Magic Hat window appears.

2. Click any of the coupon categories: Colors, Sounds, Borders, Text Styles,
Shadows, or Extras.

The Magic Hat window displays the items in that category.

3. Do either of the following:

• Click an item.

• Hold down the Control key to select multiple items, then release the Control
key and click the final item.

The Magic Hat window closes and each item appears in the scene as a coupon
with a thick, dashed border around it.

4. Drag each coupon to an object that accepts it, then release it. If an object can
accept a coupon, the object changes color when you drag to it.

The object displays the attribute.
Icras, Inc. Confidential Guide to Development Tools 41

Construction tools Chapter 3 Magic Cap Simulator
If objects have more than one part, you can drop coupons onto separate parts to
perform different functions. For example, boxes have separate content and border
parts. You can drop different color coupons into the border and content parts to set
them to different colors.

Text coupons
Use a text coupon to create a label for objects such as buttons, telecards, notebook
pages, and name cards.

To make a text coupon:

1. Hold down the Control key and click the Keyboard icon at the bottom of the
screen.

The Keyboard appears with a label maker above it.

2. Type the text for the label.

3. Drag the coupon away from the label maker.

The label maker disappears, and a text coupon remains in the scene.

4. Drag the text coupon to an object that accepts it, then release it. If an object can
accept a text coupon, it changes color when you drag to it.

The object displays the text as a label.
42 Guide to Development Tools Icras, Inc. Confidential

Chapter 3 Magic Cap Simulator Construction tools
Stamps
As you look through Magic Cap and Magic Cap packages, you’ll see cards decorated
with all sorts of small pictures: company logos, postage stamps, beasts, cacti, stylized
skyscrapers. These pictures are called stamps. You can add them to any card and
position them anywhere you like.

The Stamper contains a collection of different stamps that you can use as clip art in
the cards of your packages. The contents of the Stamper drawers are summarized in
the following table.

Components
The components category contains a group of user-interface tools. These are the
main ingredients for building the parts of a package that people interact with. These
component objects have been developed to solve a variety of user-interface problems
while maintaining a consistent set of user expectations within the Magic Cap
environment.

Buttons
A button is an object that a user can touch to invoke some action in a package.
Buttons have two states: normal and highlighted. The highlighted state is temporary
and only lasts while the button is being touched. After that, the button returns to its
normal state.

Drawer Function
general The general drawer contains a diverse selection of decorative

stamps, an animation, the sound-holding lips stamp, and a sticky
note.

office The stamps in the office drawer are designed for marking office
messages and commercial transactions.

occasions The occasions drawer holds decorative stamps for assorted holidays
and special events.

animations The animations drawer provides a selection of animated characters
that you can use to decorate your cards. If you tinker an animation
with the Tinker tool described later in this chapter, you can control
how fast it moves horizontally and vertically and how rapidly the
animation’s frames change. You can also determine whether the
animation should turn when it hits the sides of its container.

local Scenes can have their own stamps. If they do, these stamps will
appear in the local drawer and the name of the local stamp will
match that of the scene. Hallway is an example of a scene with its
own stamps. Scenes in packages can also have their own stamps.

faces The faces in the faces drawer are often useful when you’re sending a
message to someone and want to emphasize your mood visually.

symbols The symbols drawer contains common symbols you might find useful
for any message and for labeling pictures or maps you draw.

leisure The leisure drawer includes stamps representing popular diversions
and pastimes.

songs Each song stamp contains a different tune. Place one of these stamps
on a card, then touch the stamp to play.

misc. This drawer contains miscellaneous stamps.
Icras, Inc. Confidential Guide to Development Tools 43

Construction tools Chapter 3 Magic Cap Simulator
Switches
A switch is a control with two positions. Change a switch’s position by clicking it.
You can change the sound it makes when it’s touched by dropping a sound coupon
on it. Switches can be collected into a group with the ChooseOneBox class. In this
case, they behave like a group of radio buttons.

Choices
Choices are controls that let users select from a group of options. Magic Cap
provides the following types of choices:

• Choice boxes let users select an option from a list of options with text names.

• Sliders let users control continuously adjustable levels.

• Meters let users select numeric values.

Text
Text components display text entered from the keyboard. Text has many
characteristics that you can set, including typeface, size, style, and alignment. You
can set the characteristics of a text field with the coupons in the text styles category
box.

Text components can contain many other kinds of objects, including shapes, stamps,
animations, other text fields, and even scribbles from the pen. Objects placed within
a text component are clipped to the containing text component. When you create a
text field by pulling it out of the Magic Hat, its ability to contain other objects is
turned off. To turn it on, tinker the text field with the Tinker tool and flip the can
contain switch to the on position.

Magic Cap provides three special text components named phone, time, and
numbers. These components are simple forms processing controls. For example, the
numbers component accepts numeric input only.

Clocks
Clocks tell what time it is based on the time maintained in the DataRover 840. They
come in several different shapes and sizes. Some clocks are analog, others are digital,
and many are both. Some clocks can display the time zone as well as the time.

Boxes
Boxes organize groups of other objects. They have a border and are filled with a
particular color. They’re different from text fields in that boxes are primarily
organizational and are designed to hold heterogeneous groups of graphical objects,
not text.

Shapes
Shapes are irregular objects that share some properties of boxes—they can contain
other objects, and they have a border and a color. When they are stretched with the
stretch tool, they maintain their shape while being scaled horizontally or vertically.
44 Guide to Development Tools Icras, Inc. Confidential

Chapter 3 Magic Cap Simulator Construction tools
Icons
The icons drawer contains a group of icons used in Magic Cap. If you change an icon
by dropping an image coupon on a system icon, you can drop a new icon from the
icons drawer to replace it.

You can create also create an image coupon from any bitmap to replace any icon.

To create an image coupon:

1. Create or open an image in a paint application.

2. Copy the image to the clipboard.

3. Start or activate the Magic Cap Simulator.

4. Paste the image into the simulator in either of the following ways:

• To paste a two-bit image, choose Edit Paste.

• To paste a one-bit image, hold down the Shift key and choose Edit Paste.

The image appears as an image coupon in Magic Cap. If the image was in color,
it is automatically converted to a grayscale.

5. Drag the image coupon to an object that accepts it, then release it. If an object
can accept an image coupon, it changes color when you drag to it.

The object displays the custom image.

Colors
You can change the color that fills an object by dropping a color coupon into it.
Most viewable objects accept color coupons.

The color coupon category of the Magic Hat also contains a color mixer. If you want
to experiment with a variety of colors easily, drag the color mixer from the Magic
Hat window into a scene where you want to work. Drag coupons from the color
mixer to objects experiment with different color combinations. When you are
finished with the color mixer, drag it to the trash truck to remove it.
Icras, Inc. Confidential Guide to Development Tools 45

Construction tools Chapter 3 Magic Cap Simulator
Sounds
A sound coupon specifies the sound an object plays when it is clicked. You can drop
sound coupons into most viewable objects. If you don’t specify a sound, switches and
buttons will play the “touch” sound when clicked.

Borders
Use a border coupon to change the style of an object’s border. Use the no border
coupon to remove the border from an object. Some objects that accept borders are
boxes, fields, the Inspector, and meters.

Text styles
Text style coupons contain a combination of type faces, point sizes, weights, and
orientations. All text style coupons can be dropped into text fields. You can also
change the appearance of an object’s label by dropping a text style coupon into it.

The following table summarizes the text styles available in Magic Cap:

Drawer Description

standard The standard drawer contains the sounds used
throughout Magic Cap to keep the user aware of
what is happening. You can drop these coupons
into an object to change the sound that it makes
when activated.

instruments The instruments drawer contains coupons
representing all the synthesized musical
instruments that are part of Magic Cap. These
are the instruments used for making MIDI songs.

songs The songs in the songs drawer use the instruments
described above to make synthesized music.

phone A Magic Cap DataRover 840 can make all the
DTMF sounds that a phone needs to make.

more The more drawer contains extra sounds, including
the ever popular “no sound” coupon.

Drawer Description

basic The basic border drawer includes the no border
coupon, which you drop on an object to rid it of
an existing border.

lines These are the simplest borders. They draw quickly
and are widely used in Magic Cap.

fancy These fancy frames might be used to set off an
austere minimalist sketch.

objects The book and clock frames in the objects drawer
are useful for books and clocks.

misc. The misc. drawer contains extra borders.

Style Description

Plain Contains 8, 10, and 12 point Sign, and 10 and 12
point Book.

Big Contains 14 and 18 point Sign, and 14 and 18
point Book.

Styled Contains different sizes of Book and Sign with bold,
italic, and underlined styles.

Fancy Contains the Fat Caps, Typewriter, and Jot faces.
46 Guide to Development Tools Icras, Inc. Confidential

Chapter 3 Magic Cap Simulator Construction tools
Shadows
Many objects display shadows to improve their appearance. You can use shadow
coupons to change a shadow’s appearance, or to remove a shadow. You can drop
shadows into most viewable objects.

If you want to experiment with a variety of shadow types easily, drag the shadow style
choice box from the Magic Hat window into a scene where you want to work. Use
the arrows on the choice box to select a shadow style, then drag the selected coupon
out of the center section. When you are finished with the choice box, drag it to the
trash truck to remove it.

Extras
The extras drawer contains many different coupons that are useful for constructing
and adjusting the user interface of a package. The following table summarizes the
coupons that are available:

Most of these coupons are available in the Magic Cap Simulator only. Magic Cap
itself contains only Line Styles within the Magic Hat.

Coupon Options Description

line styles Drop a line style coupon into an object to change
the appearance of the border that’s drawn around
it.

properties make moveable
make unmovable
make copyable
make uncopyable
make deletable
make undeletable

Many objects that you see can be modified with the
view coupons you can find by choosing properties
in the Magic Hat. You can use these coupons to
change the behavior of objects.

shape types Shape type coupons let you specify various styles
for the shape of an object, such as a rectangle, a
circle, a diamond, or an arrow. Shape type
coupons can only be dropped into shape objects.

misc. hide
show contents
rotate left
rotate right
flip vertical
flip horizontal
bring to front
send to back
put in form
pull from form

The misc. drawer lets you control the geometric
properties of a viewable object. Shapes, stamps,
and animations can be rotated in 90-degree
increments. You can drop orientation coupons
into these objects to rotate or flip them. The ‘put
in form’ coupon and the ‘pull from form’ coupons
work with the form objects in cards.
Icras, Inc. Confidential Guide to Development Tools 47

Construction tools Chapter 3 Magic Cap Simulator
Tool holder
Tools are modes that you can turn on and off. When a tool is on, objects do
something special when you touch them. Most of the time, you only need to touch
objects to make them work. But in construction mode, you can copy, stretch, and
manipulate objects in various ways.

In construction mode, the Tool holder contains two extra items that let you change
the layout of objects in a scene or access the Inspector. These tools only appear in the
version of construction mode available in the Magic Cap Simulator.

To make the Tool holder appear, click its icon at the bottom of the screen. The Tool
holder window appears and displays a set of pencils. At the bottom of the Tools
window is a choice box that lets you choose among the sets of tools. In construction
mode, you’ll be able to use the authoring and debugging tools.

When you select a tool, the Tools window disappears and the Tool holder icon at
the bottom of the screen changes to a tool indicator icon. This icon represents the
current tool that will be applied to the next object you click. If an object cannot
accept a tool, Magic Cap plays a sound and lets you choose another object. If you
don’t need a tool you have chosen, click the tool indicator icon to dismiss it.

Authoring
The authoring tools let you specify the layout of objects in a scene. You can move,
copy, and stretch objects; in addition, you can change the attributes of an object that
determine whether it can be moved, copied, or stretched. The authoring tools are
shown in the following illustration:

Move tool

Copy tool

Stretch tool

Tinker tool
48 Guide to Development Tools Icras, Inc. Confidential

Chapter 3 Magic Cap Simulator Construction tools
Tinker tool
The tinker tool lets you examine an object and adjust its properties. The properties
determine whether you can use other tools or the objects in the Magic Hat to modify
the object’s appearance and behavior.

For example, many objects contain properties such as can move, can copy, and can
stretch. These properties determine whether you can use the move, copy, and stretch
tools to modify the object’s appearance. Similarly, the tinker window of an object
may display a frame and a sound, indicating that you can use frame and sound
coupons to modify the object.

To use the tinker tool:

1. Click the tool holder and choose authoring.

2. Click the tinker tool.

The tinker tool icon replaces the tool holder.

3. Click the object you want to examine.

The tinker window for the object appears, and the tool holder icon replaces the
tinker tool in the button bar.

Check boxes in the tinker window control many of an object’s properties. If an
object can have a label, the label chooser lets you select one of 15 positions for the
label by clicking the position you want. A data string in the bottom left corner of the
window shows how many bytes of memory the object uses.

The settings that are shown when you open an object will vary for different classes
of objects. If you see coupons that you like, you can drag them out of the open
window and drop them on other objects. However, you can’t drop coupons into the
tinker window to change an object. Just drop the coupons on the object itself to
make the changes.

You can move the tinker window around by grabbing its title bar, and you can click
the close box to close the window.
Icras, Inc. Confidential Guide to Development Tools 49

Construction tools Chapter 3 Magic Cap Simulator
Move tool
You can move some objects by simply sliding them, without using the move tool.
However, most objects require you to use the move tool to change their position. It’s
always worth trying an object to see if you can move it without the move tool. If you
can’t, try the move tool.

To move an object with the move tool:

1. Click the tool holder and choose authoring.

2. Click the move tool.

The move tool icon replaces the tool holder.

3. Slide the object around on the screen.

If you can’t move an object with the move tool, you might need to turn on its can
move property. Tinker the object as described in “Tinker tool” on page 49, turn on
its can move property, then use the move tool.

When you move an object on the screen, it’s drawn with a shadow to indicate that
it’s not attached to the scene.

Copy tool
You can use the copy tool to create a copy of an object. To make a copy, click the
copy tool, then slide out a new copy of an object. The original object will remain in
its old location while you slide the newly created copy.

You may have to set the can copy property as described in “Tinker tool” on page 49
before using the copy tool.

Stretch tool
You can use the stretch tool to resize most objects. To do this, click the stretch tool,
then drag an object to its new size.

You may have to set the can stretch property as described in “Tinker tool” on page
49 before using the stretch tool.
50 Guide to Development Tools Icras, Inc. Confidential

Chapter 3 Magic Cap Simulator Construction tools
Debugging with the Inspector
The debugging tool added to the tool holder in construction mode lets you access
the Inspector. The Inspector provides detailed information about objects in Magic
Cap.

There are several ways to access the Inspector: through the Tool holder, through
menus in the Magic Cap Simulator, and through the Magic Developer toolbar in
Microsoft Visual C++. Here’s how to access the Inspector from the Tool holder:

1. Click the tool holder and choose debugging.

2. Click the inspector tool.

The inspector tool icon replaces the tool holder.

3. Click the object you want to inspect.

The inspector window for the object appears, and the tool holder icon replaces
the inspector tool in the button bar.

For more information on using the Inspector, see “Inspector” on page 52.

inspector tool
Icras, Inc. Confidential Guide to Development Tools 51

Inspector Chapter 3 Magic Cap Simulator
Inspector
The Inspector is a tool for interactively analyzing Magic Cap objects. With it you
will point at objects and look at their contents. The Examine menu in the Magic Cap
Simulator has several items that work with the Inspector.

If the inspector is started from the Examine menu or from the Magic Developer
toolbar in Microsoft Visual C++, it displays a list of the current hierarchy of viewable
objects, called the view list (see the above illustration). To see information about any
object in the view list, click the item in the inspector; the display changes, as shown
in the illustration below.

The Inspector displays values for each of the fields of the object. The object
reference, object size, and object state are displayed at the top of the Inspector, above
the field information. A gray line separates this information from the field
information.

The name of the class that defines each field is prefixed to the field name. A gray line
separates the field information in one class from the field information in another
class. If you hold down the Control key and click the $ in the title bar, the class name
disappears.
52 Guide to Development Tools Icras, Inc. Confidential

Chapter 3 Magic Cap Simulator Inspector
If the information you’re looking at doesn’t fit in the Inspector window, you can
scroll it by sliding the text, or you can use the stretch tool to enlarge the Inspector’s
window. You can also stretch the Inspector without getting the stretch tool by simply
dragging on its frame, an operation that requires precise pointing.

If you click a field that holds an object reference, the Inspector will change to show
you information about that object.

The Inspector provides five controls in its title bar that let you use additional
features: O, X, < , $, and ?. If you click ? in the title bar, then click an object, the
Inspector displays that object’s fields. This will change the Inspector’s target object
to the newly selected object. Click < to make the Inspector display the fields of the
object that it displayed just previously. Click the X to switch between seeing the view
list and an object’s fields.

You can use the Inspector to begin tinkering with any object in the view list,
including objects that you can’t touch, like the screen object. To do this, click the O
(for Open) in the Inspector’s title bar while it’s displaying information about the
object that you want to inspect.

Fields that show an object reference can be displayed in one of two modes. The first,
shown above, describes each object by showing its class name, the object’s name, if
it has one, and the instance definition tag. This information is useful for high-level
debugging and general exploration. Clicking the $ in the title bar changes the display
to show the object reference for each object. Object references are especially useful
for low-level debugging. Click the $ again to switch between displaying instance
definition tags and object references.

You can move the Inspector around on the screen by holding down the Control key
while you press on it anywhere and drag it, or by dragging the Inspector’s title bar,
with or without the Control key. You can drop coupons into the Inspector to change
its appearance, including its border, text style, color, and so forth.

To inspect a system object, including the system root list, hold down the Control key
and click the X in the title bar. To inspect any class object, inspect any object of that
class, then click the object reference.

When you’re done with the Inspector, you can get rid of it by clicking its close box
in the top-left corner.
Icras, Inc. Confidential Guide to Development Tools 53

Inspector Chapter 3 Magic Cap Simulator
Dumping single objects
As you create your packages, moving back and forth between Microsoft Visual C++
and the Magic Cap Simulator, you may sometimes want to convert just a few objects
to text rather than dumping all objects to text, as described in “Modifying viewable
objects with construction tools” on page 28. While you’re running the Magic Cap
Simulator, you can convert any object to its text representation by displaying the

object in the Inspector, then choosing Examine Dump Inspector Target.

When you dump an object this way, the text representation is written to a file called
Log , located in the same directory as the workspace file (.dsw file) for your project.
You can dump several objects by repeatedly aiming the Inspector, then choosing

Examine Dump Inspector Target. You can then open the file in Microsoft Visual C++ to
see the dumped objects.

You can also choose Examine Dump Inspector Target Deep to dump the inspected object
and all objects that it’s related to, such as subviews, targets, object lists, and other
objects referred to by fields. This feature, called deep dumping, is useful if you want
to take an object and the objects that support it and move them to another package.
Deep dumping dumps the same objects that would be copied if the object were
copied; that is, it doesn’t dump any fields marked weak in the class definition file.
54 Guide to Development Tools Icras, Inc. Confidential

4
Bowser Jo

Bowser Jo is an HTML-based class browser for Magic Cap classes. With it you can
look at reference information for a class and its associated methods and fields. You
can also enter a search string to find matching classes, methods and fields. Since
Bowser Jo is based on HTML and Java, you access it in your web browser.
Icras, Inc. Confidential Guide to Development Tools 55

Launching Bowser Jo Chapter 4 Bowser Jo
Launching Bowser Jo
To launch Bowser Jo:

1. Launch your web browser.

2. Open the file index.html in the docs\htmlhelp subdirectory of the directory
in which Magic Developer is installed:

a. In your web browser, choose File Open.

A dialog box lets you enter a file name.

b. Click Browse.

A dialog box lets you navigate to a file.

c. Navigate to index.html , then choose Open and OK to close the two dialog
boxes.

The Bowser Jo applet appears in your web browser.
56 Guide to Development Tools Icras, Inc. Confidential

Chapter 4 Bowser Jo Using Bowser Jo
3. Optionally set a bookmark for Bowser Jo to launch it again easily.

Using Bowser Jo
There are two ways of searching for information with Bowser Jo: alphabetically and
by string matching.

Searching alphabetically
The row at the top of the Bowser Jo window provides alphabetical hyperlinks for
navigating through the list of Magic Cap constructs. The list at the bottom of the
window corresponds to the letter of the alphabet selected at the top.

Searching by string matching
Sometimes you’ll want to get a list of Magic Cap constructs that are associated with
a string. You can search for methods, fields, or classes that contain a specific string.

For example, to find all the methods with the string “tap” in their name:

1. Select methods in the first drop-down list.

2. Select containing in the second drop-down list.

3. Type the string tap in the Enter criteria field.

4. Click Search.

Bowser Jo returns a list of methods meeting the criteria you specified.
Icras, Inc. Confidential Guide to Development Tools 57

Using Bowser Jo Chapter 4 Bowser Jo
5. Double-click one of the methods in this list

Bowser Jo displays complete information about the method.
58 Guide to Development Tools Icras, Inc. Confidential

5
Debugging Tools

You can use two environments to debug Magic Cap packages:

• Microsoft Visual C++ and the Magic Cap Simulator

• The GNU source-level debugger (GDB) and the DataRover 840

Magic Developer extends both Microsoft Visual C++ and GDB with custom
commands to provide access to Magic Cap features.

To begin debugging, build your package targeting the Simulator, then use the
Microsoft Visual C++ debugging tools to stabilize your package. After you have a
working project, build the package targeting a DataRover 840, then download the
package to the DataRover 840 and use GDB to finish debugging.
Icras, Inc. Confidential Guide to Development Tools 59

Debugging in Microsoft Visual C++ Chapter 5 Debugging Tools
Debugging in Microsoft Visual C++
Magic Developer provides the following tools to extend the debugging capabilities
of Microsoft Visual C++:

• Commands on the toolbar that let you examine objects and their memory usage.

These commands are summarized in “Summary of Magic Developer toolbar
commands” on page 60.

• Macros to insert directly in your source code that write messages to the log file
and break into the debugger.

These macros are described in “Custom debugging macros” on page 74.

The rest of this section shows you how to use the Magic Developer enhancements to
Microsoft Visual C++. For general information about debugging in Microsoft Visual
C++, see the Microsoft documentation.

Creating a debug build
Before you can begin debugging in Microsoft Visual C++, you must create a debug
build of your package that targets the Magic Cap Simulator.

1. Launch Microsoft Visual C++.

2. Create a debug build of your package that targets the Magic Cap Simulator.

See “How to build a package” on page 17 for complete information.

3. If the Microsoft Visual C++ Workspace Viewer is open, close it.

You cannot open files in a Magic Developer project from the Microsoft Visual
C++ Workspace Viewer; instead, you use the Magic Developer Package Viewer.
See “Displaying and managing the contents of a package” on page 61.

Summary of Magic Developer toolbar commands
When you enable the Magic Developer debugging capabilities within Microsoft
Visual C++, you create the toolbar that provides access to the Magic Developer
extensions. See “Enabling Magic Developer” on page 17 of Magic Developer 3.2
Installation.
60 Guide to Development Tools Icras, Inc. Confidential

Chapter 5 Debugging Tools Debugging in Microsoft Visual C++
The following tools are available on the Magic Developer toolbar:

The following table summarizes these toolbar commands:

Displaying and managing the contents of a package
The Package Viewer replaces the Microsoft Visual C++ Workspace Viewer; it
provides a convenient way to display the organization of a package and to manage
the files in a package.

Displaying package organization
The Package Viewer provides three views of the current package in Microsoft Visual
C++:

• The list of source code files that create the package

• The list of classes in the package

• The list of objects in the package

Tool Description

Package Viewer Displays the organization of a package and lets you manage the files
within it. See “Displaying and managing the contents of a package”
on page 61.

Fix Up Log File Opens a copy of the log file. See “Opening a copy of the log file” on
page 64.

Logging Lets you specify the type of information which Magic Cap writes to
the log file. See “Setting log file preferences” on page 65.

Testing Runs Simulator tests from within Magic Developer. See “Running
Simulator tests” on page 66.

Inspector Lets you interactively analyze Magic Cap objects. See “Inspector” on
page 52.

Dump Object Displays the field values of an object or indexical when you are
debugging. See “Examining objects and indexicals” on page 67.

Get Operation Displays information about an operation. See “Viewing operation
information” on page 69.

Get Class Displays information about a class. See “Viewing class information”
on page 69.

Heap Dump Examines clusters or the heap when you are debugging. See
“Examining memory usage” on page 70.

Magic Step Lets you step into a dispatched method and execute it one line at a
time. See “Stepping into a dispatch call” on page 73.

Package
Viewer

Logging

Inspector

Get Operation

Fix Up Log
File

Testing

Dump Object

Get Class

Heap Dump

Magic Step
Icras, Inc. Confidential Guide to Development Tools 61

Debugging in Microsoft Visual C++ Chapter 5 Debugging Tools
You can use the Package Viewer any time you are working in Microsoft Visual C++;
however, the lists of classes and objects are available only after you have built your
project.

To display the organization of a package with the Package Viewer:

1. Click the Package Viewer button on the Magic Developer toolbar.

The Magic Developer Package Viewer opens.

2. Click either the Classes, Objects, or Files tab to specify the package view you want
to examine.

3. If the folder in the left pane is closed, double-click it or click the plus sign.

The folder opens and displays the list of classes, objects, or files.

When you click the Package
Viewer icon...

...Magic Developer
displays the
Package Viewer
62 Guide to Development Tools Icras, Inc. Confidential

Chapter 5 Debugging Tools Debugging in Microsoft Visual C++
Managing project files
In addition to letting you view the organization of a package, the Package Viewer lets
you perform the following project-management tasks:

• Insert a file

• Remove a file

• Create a new makefile

• Open a file for editing

Inserting a file
To insert a file in a project:

1. Open the project workspace and display the Files panel of the Package Viewer.

2. Right-click the Package Viewer and choose Insert.

A dialog box lets you select the file to insert in the project.

3. Double-click the file, or select it and choose Open.

The file is inserted into the project and the makefile.

Removing a file
To remove a file from a project:

1. Open the project workspace and display the Files panel of the Package Viewer.

2. Right-click the file you want to remove and choose Remove.

Magic Developer removes the file from the Files list in the Package Viewer and
from the makefile. The file remains on your hard disk.

Creating a new makefile
To create a new makefile for a project:

1. Open the project workspace and display the Files panel of the Package Viewer.

2. Right-click the Package Viewer and choose Recreate Makefile.

Magic Developer searches the current directory and creates a makefile out of all
relevant files.

3. Close the project workspace and then re-open it.

Opening a file
To open a project file:

1. Open the project workspace and display the Files panel of the Package Viewer.

2. Double-click the file you want to open.

Magic Developer opens the file in Microsoft Visual C++.
Icras, Inc. Confidential Guide to Development Tools 63

Debugging in Microsoft Visual C++ Chapter 5 Debugging Tools
Opening a copy of the log file
You can open a copy of the log file quickly by using the FixUpLogFile macro which
is available on the Magic Developer toolbar. When you use this toolbar command,
Magic Developer creates a copy of the log file in memory and opens it in a text
window in Microsoft Visual C++. You can then modify the object definitions in the
file, cut or copy the objects to other source files, and save the text file without
touching the current log file.

For example, suppose you want to paste the source code for an object you have
interactively modified in the Simulator into the Objects.odef file.

1. Use the tools in the Simulator to modify the object. See “Construction tools” on
page 37.

2. Open the Inspector in the Simulator, then dump the object to the log file. See
“Dumping single objects” on page 54.

3. In Microsoft Visual C++, click the FixUpLogFile icon on the Magic Developer
toolbar.

Magic Developer opens a new window which contains a copy of the log file.

When you click the
FixUpLogFile
icon...

...Magic Developer
displays the
contents of the
log file in a new
window
64 Guide to Development Tools Icras, Inc. Confidential

Chapter 5 Debugging Tools Debugging in Microsoft Visual C++
4. In Microsoft Visual C++, copy the dumped object to the clipboard.

5. In Microsoft Visual C++, open the Objects.odef file, then replace the object
definition with the copy on the clipboard and save the file.

Setting log file preferences
You can use the Logging dialog box to specify the type of information which Magic
Cap writes to the log file. The preferences available in the Logging dialog box are the
same as the choices available from the Log menu in the Magic Cap Simulator. See
“Log menu” on page 37 for more information.

To specify preferences for the log file:

1. Click the Logging button on the Magic Developer toolbar.

The Magic Developer Logging dialog box opens.

Copy the object
definition to the
clipboard...

...then paste it over
the existing
object definition
in Objects.odef

When you click the
Logging icon...

...Magic Developer
displays the Logging
dialog box
Icras, Inc. Confidential Guide to Development Tools 65

Debugging in Microsoft Visual C++ Chapter 5 Debugging Tools
2. Check the items which you want Magic Cap to write to the log file in each panel
of the Logging dialog box, then click OK.

Running Simulator tests
You can use the Testing button on the Magic Developer toolbar to run Simulator
tests from within Microsoft Visual C++. When you click the Testing button, Magic
Developer displays the three panels of the Testing dialog box:

Note: The choices available on the Testing panel are the same as the choices
available from the Testing menu in the Magic Cap Simulator. See “Testing menu” on
page 35 for more information.

• The choices available on the Validation and Discipline panels are the same as the
choices available from the Discipline menu in the Magic Cap Simulator. See
“Discipline menu” on page 35 for more information.

To run Simulator tests from Microsoft Visual C++:

1. Click the Testing button on the Magic Developer toolbar.

The Magic Developer Testing dialog box opens.

2. Do either of the following:

• Check the tests which you want to perform, then click OK.

The Simulator performs the tests.

• Click the button which represents the test you want to perform.

The Simulator performs the test immediately.

When you click the Testing
icon...

...Magic Developer
displays the Testing
dialog box
66 Guide to Development Tools Icras, Inc. Confidential

Chapter 5 Debugging Tools Debugging in Microsoft Visual C++
Examining objects and indexicals
You can use the Dump Object window to examine the field values of an object or
indexical when you are debugging. You may have to set a breakpoint so the debugger
breaks in an appropriate context to examine certain objects.

To use the Dump Object window:

1. Click the Dump Object icon on the Magic Developer toolbar.

Magic Developer displays the Dump Object window.

2. Type an expression to evaluate, such as an indexical name or an object tag, in the
Object field, then press Enter.

Magic Developer dumps the object for you to examine.

3. To examine an object referenced by the object you are viewing, double-click the
new object’s hexadecimal object reference to the right of the colon (:).

Magic Developer launches another instance of the window and dumps the new
object.

When you click the Dump
Object icon...

...Magic Developer displays the
Dump Object window
Icras, Inc. Confidential Guide to Development Tools 67

Debugging in Microsoft Visual C++ Chapter 5 Debugging Tools
The information in the Dump Object window is similar to the information
displayed in the Magic Cap Simulator’s Inspector. If the object has a name, it is
displayed above the first dotted line in the Dump Object window, along with the
package to which the object belongs and its hexadecimal address.

The name of the class that defines each field is displayed to the right of the dotted
lines. These dotted lines separate the field information in one class from the field
information in another class.

Each field either has a scalar value or else points to another object or indexical. If the
referenced object or indexical has a name, it is displayed with the hexadecimal value.
In the above illustration, for example, the value of the border field in the
HasBorder class is nilObject . However, the labelStyle field of Viewable
points to the TextStyle object.

You can modify the value of a field by clicking the value. Type a new value for the
field and press Enter to change it. Be careful to change field values (especially those
for ROM objects) in valid ways. Changing field values improperly can result in
crashes or unpredictable results.

About the object reference
The object reference is an identifier that Magic Cap assigns to an object dynamically
at run time. There are three common ways to determine an object’s reference:

• Set a break point in one of the object’s methods and look at the self parameter.

• Use the Dump Object tool in Microsoft Visual C++ to dump the object.

• While looking at the contents of another object, you may get an object’s reference
from the value of a field.
68 Guide to Development Tools Icras, Inc. Confidential

Chapter 5 Debugging Tools Debugging in Microsoft Visual C++
Viewing operation information
If you know either the operation number or name, you can view other information
about the operation by using the Magic Developer toolbar.

To view operation information:

1. Click the Get Operation button on the Magic Developer toolbar.

The Show Operation Information dialog box opens.

2. Enter either the operation name or number in the Expression field, then click
Recalculate.

The number, name, kind, and package are displayed in the Current Value panel.

Viewing class information
If you know either the class number or name, you can view other information about
the class by using the Magic Developer toolbar.

To view class information:

1. Click the Get Class button on the Magic Developer toolbar.

The Show Class Information dialog box opens.

When you click the Get Operation
icon...

...Magic Developer displays the
Show Operation Information
dialog box

When you click the Get Class
icon...

...Magic Developer displays the
Show Class Information dialog
box
Icras, Inc. Confidential Guide to Development Tools 69

Debugging in Microsoft Visual C++ Chapter 5 Debugging Tools
2. Enter either the class name or number in the Expression field, then click
Recalculate.

The number, name, and package are displayed in the Current Value panel.

Examining memory usage
You can use the Memory window to examine clusters or the heap when you are
debugging.

• A cluster is a collection of objects that belong to the same package.

• The heap is a relocatable block of memory that contains objects.

To use the Memory window:

1. Click the Heap Dump icon on the Magic Developer toolbar.

Magic Developer displays the Memory window.

When you click the Heap
Dump icon...

...Magic Developer
displays the Memory
window
70 Guide to Development Tools Icras, Inc. Confidential

Chapter 5 Debugging Tools Debugging in Microsoft Visual C++
Examining memory clusters
The ClusterView panel of the Memory window lets you examine memory clusters
and the objects they contain.

To examine a cluster:

1. Click the ClusterView tab in the Memory window.

Magic Developer displays the ClusterView panel.

2. If the clusters folder in the left pane is closed, double-click it or click the plus
sign.

The folder opens and displays the clusters currently loaded.

3. Double-click the cluster you want to examine.

The objects in the cluster are displayed in the right pane, sorted by their object
references. You can adjust the width of a column in this pane by dragging the
edge of the column label.

4. Optionally double-click an object reference to examine the details of an object.

Magic Developer launches the Dump Object window and displays the object’s
details.
Icras, Inc. Confidential Guide to Development Tools 71

Debugging in Microsoft Visual C++ Chapter 5 Debugging Tools
As you continue debugging, you can refresh the list of clusters at any time by right-
clicking the left pane of the ClusterView panel and choosing Refresh.

Examining heaps and non-relocatable memory
The HeapView panel of the Memory window lets you examine heaps (relocatable
blocks of memory) as well as non-relocatable blocks of memory while you are
debugging.

To examine a heap:

1. Click the HeapView tab in the Memory window.

Magic Developer displays the HeapView panel.

2. If the heaps folder in the left pane is closed, double-click it or click the plus sign.

The folder opens and displays the heaps.

3. Double-click the heap you want to examine.

The objects in the heap are displayed in the right pane, sorted by their object
references. You can adjust the width of a column in this pane by dragging the
edge of the column label.
72 Guide to Development Tools Icras, Inc. Confidential

Chapter 5 Debugging Tools Debugging in Microsoft Visual C++
4. Optionally double-click an object reference to examine the details of an object.

Magic Developer launches the Dump Object window and displays the object’s
details.

Each heap can contain an unlimited number of nested heaps. To improve
performance, Magic Developer does not initially analyze a heap; instead, it displays
the heap in the HeapView panel with a plus sign. When you double-click a heap,
Magic Developer analyzes it and either displays a list of nested heaps or removes the
plus sign.

As you continue debugging, you can refresh the list of heaps and non-relocatable
blocks of memory at any time by right-clicking the left pane of the HeapView panel
and choosing Refresh.

Non-relocatable blocks of memory usually hold C++ data structures that are
allocated with the new statement. Since these structures may contain pointers instead
of references, the memory cannot be moved.

To suppress the list of non-relocatable blocks of memory

• Right-click the left pane of the HeapView panel and deselect Show non-
relocatable blocks.

Magic Developer removes the non-relocatable blocks from the HeapView panel.

Stepping into a dispatch call
When a called subroutine is a function, you can use the Step Into command (F11)
in the Microsoft Visual C++ debugger to execute it one line at a time. When a called
subroutine is a dispatched method, however, the Microsoft Visual C++ debugger
steps over it instead of stepping into it.

A dispatched method is a subroutine that is called through the Magic Cap object
dispatcher. At runtime, the object dispatcher determines which method to call; that
information cannot be determined when the package is compiled.

The Microsoft Visual C++ debugger does not recognize the assembly language which
the object dispatcher is written in. Use the MagicStep command (Shift+F8) on the
Magic Developer toolbar to step into a dispatched method.
Icras, Inc. Confidential Guide to Development Tools 73

Debugging in Microsoft Visual C++ Chapter 5 Debugging Tools
For example, the file puzzle.cpp in the samples\Puzzle subdirectory of the
directory in which Magic Developer is installed contains the following call to the
dispatched method ResetGame:

Method void
PuzzleBox_ResetConfirm(Reference self)
{

if (OptionKey()) {
ResetGame(self);
return;

}

PerformWithConfirmation(iConfirmationWindow,
iScrambleTilesPrompt,
self, operation_ResetGame,
iMagicSound,
iPuzzleLogo,
true);

}

If you place a breakpoint at the ResetConfirm method and then use MagicStep to
execute each line in it, the debugger drops into the ResetGame method so you can
execute each line in ResetGame individually. However, if you use the Microsoft
Visual C++ Step Into command to execute each line in ResetConfirm , ResetGame
will execute as a single block of code.

MagicStep steps only into a dispatched method if full symbolic information is
available for it; that is, if a dispatched method is either within your own package or
another package for which you have symbolic information, you can use MagicStep
to step into it. If Magic Developer cannot find symbolic information or if the called
subroutine is not a dispatch, MagicStep behaves like the Microsoft Visual C++ Step
Into command.

Custom debugging macros
Magic Developer provides custom macros to assist you in debugging packages that
you create. The following table summarizes the debugging macros:

Because these macros require a debug version of Magic Cap, they work only with the
Magic Cap Simulator; they are ignored when you are debugging with GDB on a
DataRover 840.

The message strings in these macros can include any sprintf parameter list. For
example:

Log(("the number %d is too small", number));

Macro Behavior

Assert(condition) If the condition is false, breaks into the debugger,
writes a message to the message window, and
writes a message to the log file.

Complain((message)) Breaks into the debugger, writes the message to
the message window, and writes the message to
the log file.

DebugMessage((message)) Writes the message text to the message window
and to the log file.

Log((message)) Writes the message text to the log file.
74 Guide to Development Tools Icras, Inc. Confidential

Chapter 5 Debugging Tools Debugging in Microsoft Visual C++
If you hide the development tools menus in the Simulator, Magic Developer ignores
the following macros:

• Assert macros

• Complain macros

See “File menu” on page 33 for more information.

Breaking into the debugger
When you are testing a package in the Magic Cap Simulator, the Complain and
Assert macros interrupt program execution and break into the debugger.

An assertion lets you verify run-time conditions in your code. You can use an
assertion to make sure that a particular object is not nil, see if a value is within a
specified range, check if one value is less than another, or perform any other test.

The Assert macro uses a condition to perform the test that you specify. If the
condition is false, the Simulator breaks into the debugger, displays a message in the
Microsoft Visual C++ message window, and writes a message to the log file.

Here are some examples of assertions:

/*
 * Make sure that a sound is not nil before fooling around with it.
 */
Assert(Sound(self) != nilObject);

/*
 * Make sure that an object is a member of a particular class.
 */
Assert(Implements(oldObject, Coupon_));

/*
 * Make sure that a value is in range.
 */
Assert(spoonCount < 1000);

/*
 * See if a cached value is still good.
 */
Assert(EqualBox(border, &cached));

Do not confuse the Assert macro with the Complain macro. The Assert macro
only breaks into the debugger when its condition is false; the Complain macro
breaks into the debugger whenever it executes. Complain also displays a message in
the Microsoft Visual C++ message window and writes the message into the log file.

Writing messages to the log file
If you don’t want to break into the debugger, you can use the Log or DebugMessage
macros to notify you when certain code is executing. Both Log and DebugMessage
write a message that you specify to the log file; in addition, DebugMessage displays
the message in the Microsoft Visual C++ message window.
Icras, Inc. Confidential Guide to Development Tools 75

Debugging in GDB Chapter 5 Debugging Tools
Debugging in GDB
The GNU source-level debugger (GDB) is a freeware debugger that you can use to
debug C++ applications. Magic Developer extends the debugging capabilities of
GDB so you can use it to debug Magic Cap packages.

GDB has two important benefits:

• GDB is a source-level debugger that maintains a relationship between the
software’s source code and what is being executed in the Magic Cap run-time
environment. The most beneficial example of this parallelism is that a developer
can step through the software’s source code and examine data structures in the
syntax of the programming language used to develop the software.

• GDB is a remote debugger. GDB runs on your PC while the software you are
testing runs on a DataRover 840. A serial cable connects the two systems for
downloading software, sending commands, and retrieving data.

Magic Developer extends GDB to provide special features related to Magic Cap
software development, including tools for inspecting and dumping objects and
memory clusters. These features are summarized in “The Magic Developer
extensions to GDB” on page 78.

The rest of this section shows you how to use the Magic Developer extensions to
GDB. For general information about debugging in GDB, see the book Debugging
with GDB by Richard Stallman and Roland Pesch in either of the following
locations:

• In the file gdb.pdf in the docs\sdkdocs subdirectory of the directory in which
Magic Developer is installed.

• At http://www.eecs.tulane.edu/www/htdocs/gdb/gdb_toc.html on the
World Wide Web.

Launching GDB
1. Create a release build of the project, targeting the appropriate DataRover 840, as

described in “How to build a package” on page 17.

2. Download the build to the DataRover 840 as described in “Downloading a
package to a storage card” on page 30.

3. Enter Monitor mode by cold booting while holding down the Option button. See
“How to perform a cold boot” on page 30.

The screen remains blank; however, the device is now on and in Monitor mode.

4. Make sure that the cable connects the serial port of your PC to the Magic Bus
port of the DataRover 840.

5. On the PC, open a command prompt window, change to the directory that
contains your package, then run the batch file debug.bat .

GDB begins running, boots the DataRover 840, and loads the package.
76 Guide to Development Tools Icras, Inc. Confidential

http://www.eecs.tulane.edu/www/htdocs/gdb/gdb_toc.html

Chapter 5 Debugging Tools Debugging in GDB
6. On the PC, press Ctrl+C to interrupt program execution on the DataRover 840.

The PC screen displays the debugging prompt, (magic-gdb).

Examining objects with GDB
You typically use GDB to track program execution and inspect data structures. For
example, the MakeAMove() method of the sample puzzle project executes every time
a user attempts to move a tile in the sliding puzzle game. Suppose you want to
examine the object referenced by the MakeAMove() method:

1. Launch the puzzle game, then interrupt program execution as described in
“Launching GDB” on page 76.

2. At the GDB command prompt, set the breakpoint by entering the command
break MakeAMove .

The screen displays the following:

(magic-gdb) break MakeAMove
Breakpoint 1 at 0x3c9400: file Puzzle.cpp, line 487.

3. At the GDB command prompt, restart program execution by entering the
command cont .

The screen displays the following:

(magic-gdb) cont
Continuing.
^@^@

4. In the DataRover 840, move one of the puzzle pieces.

GDB encounters the breakpoint and breaks into the debugger at the
MakeAMove() method, and the screen displays the following:

Breakpoint 1, MakeAMove
(
self=0x3fc7c,
whichTile=11)
at Puzzle.cpp:487
Icras, Inc. Confidential Guide to Development Tools 77

Debugging in GDB Chapter 5 Debugging Tools
5. At the GDB command prompt, dump the object referenced by the
MakeAMove() method by entering the command dobj self.

The screen displays the following:

Notice that the object information displayed in GDB is the same as the
information displayed by the Dump Object window in Microsoft Visual C++.

6. At the GDB command prompt, exit the debugger and disconnect from your
DataRover 840 by entering the command quit.

GDB does not properly display statically initialized global variables. For example, if
you code the following, GDB will not correctly display the value of string :

char *string = "Hello World";
MyFunction()
{

dosomethingwith(string);
}

The Magic Developer extensions to GDB
The following table summarizes the Magic Developer command extensions that are
available in GDB:

Command Description

dobj Displays the contents of an object.

dloc Displays information about an object locator.

pobj Displays the address of an object.

cdump Lists all clusters or displays the contents of a cluster.

hdump Dumps a heap.

set extra-data-max Sets the maximum number of bytes of extra data
displayed by dobj .

cnum, getclass Displays the name for a given class number.

getindexical Converts between indexical names and numbers.

getobject Converts between object names and numbers.

dx Disables Debugger() breaks.

dx- Re-enables Debugger() breaks.

ir Display contents of single register.

set fields-as-indexicals Displays the object fields with the indexical name.

set magic-step Enables or disables stepping to the target of method
dispatches.
78 Guide to Development Tools Icras, Inc. Confidential

Chapter 5 Debugging Tools Debugging in GDB
In addition, the following commands are available when debugging a remote Magic
Cap device:

Using the GDB online help
GDB contains an online help system that you can access by entering the command
help at the (magic-gdb) prompt. In addition, you can access help for the Magic
Developer extensions by entering the command help magic at the command line
prompt.

To display detailed help for a specific command, enter help followed by the
command name at the (magic-gdb) prompt. For example, to display help on the
dobj command, enter the following at the prompt:

help dobj

set magic-xfile Designates X file to use for Magic Cap class information.

check-xfile Compares the date of an x-file with the build date.

Command Description

autoquiet Enables automatic quieting of sounds when Magic Cap
stops at a breakpoint.

autoquiet- Disables automatic quieting of sounds when Magic Cap
stops at a breakpoint.

quiet Manually squelches the sound currently in the Magic Cap
sound buffer.

unquiet Manually restarts the sound in the Magic Cap sound
buffer.

set mips-dcache Enables or disables the data cache.

mips-dcache-exclude Excludes an address range from the data cache.

mips-dcache-include Includes an address range in the data cache.

set save-breaks Specifies whether to discard all the breakpoints when the
remote device reboots.

xfile-path Sets the current package X file search path.

set logname Sets a different name for the log file.

Command Description
Icras, Inc. Confidential Guide to Development Tools 79

Debugging in GDB Chapter 5 Debugging Tools
80 Guide to Development Tools Icras, Inc. Confidential

6
Object Tools

Magic Cap software is constructed with conventional software development tools
and some unique tools developed by Icras, Inc.. These tools implement the Magic
Cap object model by preparing source files for the C/C++ compiler and by binding
together the compiled package.

From a programmer’s point of view, these tools implement most of what is object-
oriented about software development for Magic Cap. The planning and design
process usually involves building a Magic Cap package from existing classes. The
actual C programming you’ll do occurs when you have to develop new classes or
override the methods of an existing class.

Object model information is specified in two kinds of source files. A class definition
file contains descriptions of class templates, which can include method definitions
that are implemented in separate C files, and is identified by a .cdef suffix. An
instance definition file describes the static objects defined by a package at build-
time, and is identified by a .odef suffix. See “Class definition syntax” on page 84
and “Instance definition file” on page 92 for descriptions of the files’ syntax.

Using or modifying existing classes has several benefits. It saves implementation
effort and it reduces package memory resource requirements since the Magic Cap
classes are stored in system ROM and special-purpose classes you develop must be
stored in RAM.
Icras, Inc. Confidential Guide to Development Tools 81

Terminology overview Chapter 6 Object Tools
Terminology overview
In object-oriented programming systems, a class is a description of the data and
behavior of a set of objects. An object is a combination of data structures and
procedures that act on that data. A class represents an agreement between a developer
and a development system about how those objects will behave when it is called
upon to perform some action. Magic Cap classes are defined in a class definition
file.

Magic Cap further distinguishes between two parts of a class definition: what a class
can do and how it accomplishes this. A class’s interface represents the first part. It
describes the kind of data an instance of a class can hold and the actions it can
perform. It is like a group of data structure declarations and function prototypes in
a structured programming environment. An operation refers to the part of a class’s
interface that describes the actions it performs. A special case of an operation is an
attribute which describes how to manipulate the data stored by an object. Attributes
usually provide access to fields (see below), and their code is usually generated
automatically within constraints specified in the interface.

For a given class interface, a programmer can supply an implementation of a class’s
data storage structures and the code that performs its work or, in some cases, the
programmer can indicate that these should be supplied by other classes. This
implementation is divided into fields that store the data, or instance variables, of a
Magic Cap object and methods that comprise the code that manipulates the data in
a field or performs some action in an object. Fields and methods can take different
forms to give a developer flexibility in software design.

Classes can be defined in terms of other classes through a process called inheritance.
A group of related classes derived from a common source is called a class hierarchy.

A class is a static definition and by itself it doesn’t do anything. At runtime, Magic
Cap can create an instance of a class called an object that performs the actions
advertised by the class. In Magic Cap, we often think of objects in two places. The
instance definition file contains a textual representation of the static objects that the
object compiler creates for a package. At runtime a package may create dynamic
objects as well. For example, whenever the user touches new in the Notebook, a new
notebook page is created dynamically.

A Magic Cap package is a collection of objects that are organized into an object
hierarchy. This hierarchy is different from but related to the class hierarchy used to
organize class definitions. See “Object hierarchy” on page 94 for more information.
82 Guide to Development Tools Icras, Inc. Confidential

Chapter 6 Object Tools Object syntax
Object syntax
Class and object definition files are written in a simple language with a small set of
syntax rules. Because the tools perform minimal compile-time checking, you should
adhere to the naming rules described in the following sections.

A definition file is composed of a series of statements. Each statement is terminated
by a semicolon.

Two forms of comments are recognized, both borrowed from C and C++.

• Any text between the delimiters /* and */ is treated as comments and ignored.

• // indicates a single line comment. Text to the right of this delimiter is treated as
a comment and ignored, up to the end of the line.

There is a simple conditional compilation facility that mimics the C preprocessor.
The supported statements are #define , #ifdef , and #endif :

#define identifier token-sequence
#ifdef identifier
#endif

In subsequent instances, the identifier string will be replaced by the token sequence.

Class definitions may be included in other class definition files, and must be
included in object definition files. The read statement provides this feature
(Although the included file is specified by its .cdef source name, it is actually a
compiled form with the extension .cx that is read). You must include the class
definitions for any class that you refer to (as a field type or base class) in defining your
own classes.

read " fileName ";

Definition file statements can use a C-like numeric expression syntax. Standard
operators like + and - as well as parentheses are supported.

Class definition file
The class definition file contains descriptions of classes that are unique to a given
package. The name for this file is usually derived by taking the package’s name and
appending the .cdef suffix to it. Class definition files are compiled during the
package build process. Syntax for specifying fields, attributes, operations, and more
is described in the following pages.

If a package doesn’t define any new classes, it doesn’t need a class definition file.
Packages can have more than one class definition file; it’s a good idea to derive the
file name from the class name, for example ChessPiece.cdef , Rook.cdef,
Bishop.cdef . The latter two would of course include ChessPiece.cdef, since
they define classes which inherit from it.
Icras, Inc. Confidential Guide to Development Tools 83

Class definition file Chapter 6 Object Tools
The definition of a new class includes the following:

The interface part of the class definition specifies the name, arguments, and return
type of each operation and attribute of a class. The implementation part defines the
fields and methods of a class. The fields define the types for the data holders of a class
and the methods define the code or algorithms for the procedures of a class.

To implement the methods of a new class, you must provide source code for the
following:

• methods for new operations

• methods for operations you override

The source code for these methods are stored in C files separately from the class
definition file. “Method implementation” on page 91 describes how to structure this
source code.

Internally, Magic Cap identifies classes and operations by number. If you want, you
can manually assign these numbers in the class definition file to prevent Magic Cap
from randomly reassigning these numbers between one version of a package and the
next.

Class definition syntax
Classes are defined in class definition files like this:

define class className ;
// inheritance part
// interface part
// implementation part

end class;

The first statement in a class’s definition specifies the name used to identify it to its
subclasses and for objects that are instances of it.

The interior portion of a class definition contains three parts. The inheritance part
determines the mechanisms by which one class is derived from other classes. The
interface part describes the attributes and operations of the class. The
implementation part provides the data handling for the classes fields and the
algorithms for its methods.

Item Description

class name Each class has a name to associate instances of it
with the class definition.

inheritance Classes are derived from superclasses and inherit
their interfaces and implementation.

fields Classes store their data in fields.

attributes Attributes are interfaces for special operations that
manipulate data in a class.

operations Operations describe what you can do to an object.

methods Methods are code that implement a class’s
operations and attributes.

overrides Overrides are operations and attributes inherited
from some superclass, but re-implemented in the
current class.
84 Guide to Development Tools Icras, Inc. Confidential

Chapter 6 Object Tools Class definition file
Inheritance
Magic Cap is like other object-oriented systems in that it has a class hierarchy that
organizes classes according to their functionality. The mechanism that enables this
system of organization is called inheritance. When one class inherits from another
class, it inherits its fields, methods, attributes, and operations. It is called a subclass
of the first class, which is also called a superclass.

Classes you create can be derived from other classes through inheritance. Most
classes are ultimately derived from the Object class.

There are two ways in which one class can inherit from another. The syntax for
enabling this process is the inherits from statement. A class definition can contain
multiple inherits from statements that specify different superclasses.

The various forms of the inherits from statement can contain more than a single
superclass. You should use a comma to separate superclasses within a single
statement.

inherits from superclassName ;
inherits from superclass1, superclass2 ;

The inherits from statement indicates the superclass from which a subclass
inherits its attributes, operations, fields, and methods. Operations and attributes in
the subclass that need to be changed from what is defined in a superclass can be
overridden with the overrides statement described below.

Normally, a class will inherit from a superclass that is itself ultimately derived from
the Object class. This kind of superclass is sometimes called a flavor class.

Mixin classes precisely define their relationship with other classes in the class
inheritance scheme. Mixin classes provide the convenience of holding a group of
features in a class that can be used in combination with other classes while it is not
tied to a specific place in the class hierarchy. This can be more flexible than taking a
general purpose class and overriding what you don’t need.

Flavor classes must inherit implementation from exactly one flavor and from any
number of mixins. They must inherit their interface from at least one flavor and any
number of mixins. Mixin classes must “mixin with” exactly one flavor class. They
can inherit their interface or implementation from any number of mixin classes. See
“Mixin classes” on page 87 for more details.

inherits interface from superclassName ;

This form of inheritance is useful in forcing a class to match the interface of another
class and completely provide a new implementation for each attribute and operation
of the inherited class. The inherits interface from statement has a
performance benefit by removing the need for Magic Cap to search for the
implementation of a class’s methods in the interface superclass. Another benefit of
this statement is to provide more type checking during class development.
Icras, Inc. Confidential Guide to Development Tools 85

Class definition file Chapter 6 Object Tools
Extra data
A class that uses the extra data portion of instances to store data whose size varies
from one object instance to another declares the fact in the class definition with the
uses extra keyword.

uses extra;

In general, when a class specifies uses extra , this means that it will be responsible
for managing some number of raw bytes whose structure, if any, is private to the
class. It’s illegal to store object references in such a region, because the Magic Cap
runtime (especially the garbage collector) routines have no way to ensure their
continued consistency with the rest of the system.

uses extra list: type ;
uses extra list: type , weak;

This class uses the extra data portion of object instances to store a “structured list”
whose elements are all of the same type and size. Specifically, if the element type is
Object, the array elements are object references and can be maintained by the
runtime.

The weak keyword indicates that the members of the list are not owned by this
object, and so should not, for instance, be automatically deleted when this object is
destroyed.

Previous versions of Magic Cap restricted how objects’ extra data could be used: only
one class in a class hierarchy could use the extra data portion of object instances. The
Rosemary release of Magic Cap relieves this restriction with the concept of shared
extra data.

A class that uses the extra data portion of instances, but also wants to allow subclasses
to store their own extra data, declares the fact in the class definition with the shares
extra keyword. The ExtraUsed() method will be called to determine how much
of an instance’s extra data is maintained by this class.

shares extra;

A subclass of this class that also wishes to use the extra data portion of instances
declares this fact with the uses shared extra keyword in its class definition.

uses shared extra;

If this class wishes to allow subclasses of itself use of extra data as well, it will also
need to override ExtraUsed() . A class that shares the extra data portion of object
instances can call InheritedExtraUsed() to find the offset into the extra data
where the data specific to that class starts.

The Rosemary version of Magic Cap uses this feature to implement the new viewable
format. The list of subviews is maintained in a viewable’s extra data portion.
However, certain subclasses of class Viewable also use the extra data portion of
object instances for their own purposes. A prime example of this is class Card , which
stores form item data in the extra data portion of card instances. Class Viewable
declares uses extra list: Object and shares extra and class Card declares
uses shared extra so that both classes have access to the extra data.
86 Guide to Development Tools Icras, Inc. Confidential

Chapter 6 Object Tools Class definition file
If your package implements a subclass that uses extra data, you may need to take into
account, in the class definition and possibly some methods, the fact that not all the
extra data in an instance belongs to your subclass. In particular, once some superclass
uses unstructured extra data with uses extra , none of its subclasses may declare
structured extra data with uses extra list .

Abstract classes
A superclass may be an abstract class which is a class that cannot have any instances,
though its subclasses can have instances. An abstract class can be derived from
another abstract class or from a concrete class.

Abstract classes are used to collect attributes and operations into a convenient class
that can then be inherited by other classes. They exist to help organize the class
hierarchy and not for the immediate purpose of instantiation. Abstract classes
include the keyword abstract at the top of their class definition.

Abstract classes can contain fields with the noGetter , noSetter and noMethod
flags, as described in “Defining attributes” on page 88 and “Defining operations” on
page 89.

Mixin classes
Mixin classes are abstract classes that are independent of Object and branch off the
class hierarchy. The classes that can inherit from a particular mixin class can be
limited to a specific list with the mixes in with statement.

mixes in with flavorClassName ;

This statement limits the mixin class to flavorClassName and any of its subclasses.
To make a mixin class applicable to any class, specify Object as the class that it can
mix with. Since all flavor classes in the class hierarchy are derived from Object , this
will allow the mixin class to be applied to any subclass of Object .

Mixins also provide a way to distribute functionality to disparate areas of the class
hierarchy without having to gather them into a common superclass. By not gathering
them, the possible overhead of fields provided by mixins is only carried by the classes
that require it and not by all the subclasses of the common superclass. This can save
memory on an instance by instance basis, especially in a memory limited system like
Magic Cap.
Icras, Inc. Confidential Guide to Development Tools 87

Class definition file Chapter 6 Object Tools
Defining fields
Fields provide the implementation for storing data in an object. The field
statement has the following syntax:

field fieldName : fieldType [, optionalFlags];

Field names should begin with a lower-case letter. The field type can be any data type
or class name. The optional flags modify the properties of a field. The following list
describes the different options:

Here is an example of a simple field:

field bookColor: Unsigned;

This specifies a field named bookColor that has the type Unsigned .

If the field definition includes a getter or setter flag, the class compiler generates
an automatic method for these fields. The name of the automatic getter is derived
from the field’s name by capitalizing the first letter in its name. The automatic setter
attribute also adds the prefix Set to the field’s name.

If an attribute is new to a class, then a matching attribute statement is required. If an
attribute is inherited, then getter or setter can be used to override the flags of the
inherited attribute. In that case, no additional attribute statement is needed in the
subclass. This is described in the next section.

Defining attributes
An attribute describes the interface to methods that access a class’s data. There are
two forms of attributes. The first form provides a well-defined interface for the
automatic methods mentioned in the previous section. Here is an example of field
and attribute definitions that a class definition might include:

field visible: Boolean, getter, setter;
attribute Visible: Boolean;

Option Description

getter A getter is a method for getting the value in a field.
This flag generates a getter method for the field.
No interface is created for this automatic getter
and a separate attribute statement should also be
defined for it.

setter A setter is a method for setting the value in a field.
This flag generates a setter method for the field.
No interface is created for this automatic setter
and a separate attribute statement should also be
defined for it.

weak The weak flag limits the control an object has over
the data in a field. When this flag is set, the
object referenced by this field will not be copied
with the object that controls it, though the
reference remains intact in the copy. In addition,
when an object instance is destroyed, the object
referenced by this field will not be destroyed with
the object that controls it. It can be used to
control access to an object during wireline
encoding. This flag can only be applied to fields
with objects. It is rarely used.
88 Guide to Development Tools Icras, Inc. Confidential

Chapter 6 Object Tools Class definition file
The first line defines a field with its type and special flags indicating that getter and
setter attributes are necessary. The second line defines these attributes. It defines both
the getter operation Visible and the setter operation SetVisible . Objects can use
these methods to get and set the value of the visible field. Note the convention
that an attribute is named the same as the underlying field, but the first letter is
capitalized.

The second form of an attribute is independent of a specific field in a class. For
example, attributes can be created that set and return a calculated value instead. The
calculation could be based upon a field value (such as returning a percentage based
on a field that maintains a fractional value), the system state (such as the current
scene or the modem status), or system constants (such as the image of the logo or a
system sound). In this case the package needs to provide the implementation of the
getter and setter.

Attributes in class definitions are defined like this:

attribute attributeName: attributeType , [flags];

The following list describes the different attribute options:

Defining operations
An operation describes the interface to a class’s method. It is similar to a procedure
declaration with a list of flags that control the operation’s behavior. Operations in
class definitions are defined like this:

operation operationName ([paramName: paramType])
[: returnValueType][, flags];

This includes the operation’s name, its return value and an optional list of
parameters with their types. In addition, an operation definition may include a list
of flags that control the behavior of operations.

Ordinary methods in a class have one required parameter, known as self . The self
parameter is a reference to the object whose method is being invoked. Since every
method requires this reference as its first parameter, this parameter is omitted in the
class definition file. However, you must use it in the C file that contains the source
code for the class.

class operation operationName ([paramName: paramType])
[: returnValueType][, flags];

Option Description

noSetter The noSetter flag indicates that the class provides
no setter method for this attribute but that
subclasses could provide one. This flag can only
be used with attributes of abstract classes.

noGetter The noGetter flag indicates that the class provides
no getter method for this attribute but that
subclasses could provide one. This flag can only
be used with attributes of abstract classes.

readOnly The readOnly flag indicates that the attribute can
return a value but cannot set one, and so neither
this class nor its subclasses should provide a
method to do so. Subclasses can redeclare an
attribute to add a setter.
Icras, Inc. Confidential Guide to Development Tools 89

Class definition file Chapter 6 Object Tools
The following list describes flags for operations:

See also “Exporting interfaces” on page 91.

Package globals
Previous versions of Magic Cap supported class globals. These are no longer
supported. Instead, package globals make porting standard C libraries easier.

Defining simple intrinsics
A class can define operations that don’t require an instance of the class in order to
execute. These operations are called simple intrinsics. They have the same properties
as intrinsics (see above), but they do not require a reference as their first parameter.
Simple intrinsics are faster to invoke than other operations but, like intrinsic
operations, they cannot be overridden by subclasses.

Simple intrinsics in class definitions are defined like this:

intrinsic intrinsicName ([paramName: paramType])[: returnValueType];

Overriding methods
Once an operation or attribute has been defined in a superclass, a simple overrides
statement can be used to provide a new implementation in a subclass. The
overrides keyword can also define an implementation for a previously
unimplemented operation, such as for operations that were defined with the
noMethod flag in a superclass. A class can also use the overrides keyword to
override an auto-getter or auto-setter method that was defined for a field of a
superclass.

To override a method in a class definition, use the overrides statement:

overrides operationName ;

This statement indicates that a given class will supply its own implementation for the
operation.

Item Description

noMethod The noMethod flag indicates that the class does not
provide a method for this operation. Concrete
subclasses of a superclass must provide the
method by override.

noFail The noFail flag indicates that the Magic Cap method
dispatcher will do nothing and return 0 (if there is
a return value) if the object passed to the
operation is a nil object. This may provide
convenience during debugging. This flag is only
useful during package development on a Magic
Cap Simulator since all methods are treated as
noFail on a DataRover 840.

intrinsic The intrinsic flag indicates that this operation is
called by a direct jump to the method which is
faster than the usual method dispatching
mechanism. Intrinsic operations can’t be
overridden by subclasses. There can be no other
flags specified with the intrinsic flag.
90 Guide to Development Tools Icras, Inc. Confidential

Chapter 6 Object Tools Exporting interfaces
Method implementation
Code from files that have been compiled and linked must be extracted and installed
into the correct classes. Magic Cap uses a naming convention to decide which
routine’s code to attach to an operation. The key part of this convention is that
operations in the source file are indicated by the class name and operation name
connected with an underscore. For example, a C++ function named
TestClass_DoSomething would provide the code for the DoSomething operation
of the TestClass class.

The implementation code for a class must be compiled with the preprocessor
variable CURRENTCLASS set to the Magic Cap class name, so that some Magic Cap
features implemented as macros will expand properly.

#define CURRENTCLASS TestClass
// code goes here
#undef CURRENTCLASS

When an operation is declared or called in C++ source, the first parameter must be
the responder, the object whose operation is being called, normally named self .
This is analogous to the implicit this parameter in C++. When an operation is
defined in a class definition file, the responder is implied but is never shown.

Indexicals
Indexicals are used for two purposes: they are the only way to refer to an object from
C++ code and they are used in object instance definition files to refer to well-known
objects.

Indexicals are declared in class definition files using the following syntax:

indexical indexicalName : class ;

The file Indexicals.xh is generated by the Class Compiler to define all system
indexicals. Its purpose is to allow C++ code to symbolically refer to indexical objects.
It is included automatically when you include MagicCap.h .

You can use the class Object as a general-purpose place holder for the indexical’s
class.

Exporting interfaces
You can export your indexicals, classes, and operations for use by other packages by
building a separate class definition file for them with their interface definitions. You
cannot export intrinsics. This will include all the information needed to use them.

Here is an example,

define interface name;
indexical nameIndexical ;
class nameClass ;
operation nameOperation ;

end interface;
Icras, Inc. Confidential Guide to Development Tools 91

Example class definition file Chapter 6 Object Tools
Example class definition file
Here is an example of a complete .cdef file:

//
// ImportSample
//
// A demo of a package that uses the services of
// another package (ExportSample)
//
// General Magic Developer Technical Services
// Copyright (c) 1992-1996 General Magic, Inc.
// All rights reserved.
//

read "MagicCap.cdef";

define class Greeter;
inherits from Viewable;

overrides Draw;
overrides AutoMove;

end class;

define class Installer;
inherits from SimpleActionButton;

field toBeInstalled: Viewable, setter, getter;
attribute ToBeInstalled: Viewable;

operation InstallObjectsIntoStamper();
// Creates an object from a class
// defined in another package (ExportSample) and invokes
// an operation on it. Interpackage operability!

end class;

indexical iClientScene: Scene;
indexical iCantFindExportSampleInterface: Text;

read "ExportSample.cdef";
import ExportSampleInterface or say iCantFindExportSampleInterface;

Instance definition file
Each Magic Cap package must have an instance definition file whose name ends
with .odef that describes the objects used by that package. A package can have more
than one instance definition file. As part of the process of building a Magic Cap
package, you compile the instance definition file into a package.

The instance definition file contains textual representations of the package’s static
objects. These are the objects the package creates when it is loaded into the Magic
Cap environment. The package usually creates other dynamic objects at runtime but
they are managed by the Magic Cap environment itself.
92 Guide to Development Tools Icras, Inc. Confidential

Chapter 6 Object Tools Instance definition file
Packages which define custom classes may contain static objects of those classes. In
that case, the instance definition file may need to include one or more class definition
files using the read statement.

instance class instanceID [objectName][script][flags];
fieldName : value ;
.
.

end instance;

The instance definition file simply contains a list of object instances. Each object
instance definition includes the name of its class, an instance tag and an optional
object name. The name can be helpful in the debugging process though it does incur
some system overhead. Objects in an instance definition file do not have to be in any
special order.

The instance tag is a bookkeeping device for organizing instance definitions in an
instance definition file. The instance tag is a symbolic value, and is retained through
procedures like object dumping.

Instance tags are separated into namespaces, so that different sets of objects can use
the same tag but still be able to refer to objects in other sets without conflicts. When
referencing an instance that was defined with a symbolic tag, the object name is no
longer specified:

superview: (Scene deskScene);

The interior of an instance definition contains a list of field initialization statements
with the name of the field followed by its value. These correspond directly to the
fields in the object’s class or superclass and must use the same order found in the class
definitions. The different values that a field can have are described in the next
section.

The instance definition is finished with an End Instance statement.

Object dumping
The Magic Cap Simulator can translate objects from the Magic Cap runtime
environment to instance definition files. This process of decompiling is called object
dumping. Dumping is a vital feature for moving between textual and live binary
representations of objects. You can also convert objects directly from Magic Cap to
text one at a time.

Magic Developer provides a useful way to develop an instance definition file by
writing a series of instance definitions. First, build a Magic Cap package with Magic
Developer, then modify the objects in construction mode and finally dump them
back into Magic Developer. While this is a good technique for developing instance
definitions, it does remove any comments you may have stored in your instance file.
Place your comments carefully in the instance definition file so that you can easily
fold in your modified instance definitions.

Object dumping with the Magic Cap Simulator preserves the instance tags used in
instance definition files. When a new object is created at runtime and then dumped
with the Magic Cap Simulator, it will be dumped with the tag unnamedn.
Icras, Inc. Confidential Guide to Development Tools 93

Instance definition file Chapter 6 Object Tools
See “Dumping single objects” on page 54 and “Opening a copy of the log file” on
page 64 for more information about dumping a single object. See “Modifying
viewable objects with construction tools” on page 28 for a description of dumping a
package.

Object hierarchy
The objects in the instance definition file are connected in a tree-like hierarchy by
references to one another. At the top of this hierarchy is the
SoftwarePackageContents object. Every other object in the instance definition
file must be referred to by at least one other object and ultimately referred to by
SoftwarePackageContents or by an indexical.

Field initialization statements
Each object can contain any number of fields. The instance definition file lists the
values that these fields have when the package is loaded.

fieldName: value ;

Each field initialization statement has a pair of tokens separated by a colon and
terminated with a semicolon. The token on the left is the name of the field beginning
with a lower-case letter. The token on the right is the value of the field. Each value
has a type that indicates the kind of data that the field can contain. For example, one
field may contain a floating point value and another may contain an indexical.

The following sections describe the different types a field value can have.

Object reference
An object reference takes the following form:

(ClassName instanceTag)

ClassName is the name of the class that the object is instantiated from.
instanceTag should be unique within the namespace.

The object reference information in the field initialization statement should match
the information used to define the instance. For example,

target: (Greeter MyHelloWorld);
94 Guide to Development Tools Icras, Inc. Confidential

Chapter 6 Object Tools Instance definition file
Indexicals
Indexicals allow you to refer to standard system objects, important objects in your
package or dynamic objects like the current scene. Standard system objects and
dynamic objects are listed in Indexicals.h . Indexicals can be a reference to an
object or a list of objects.

Indexicals are initialized in object definition files with this syntax:

indexical indexicalName = (ClassName nameTag);

The object list of standard system objects is also called the system root list.

To refer to an indexical in a field of one of your package’s objects, you would have a
line like the following:

labelStyle: iBook12;

Operation number
Some Magic Cap classes, like Control and AttributeText , define fields that
require operation numbers as values. System operation numbers are defined for the
operations in system classes. The system operation numbers are listed in
OperationNumbers.xh .

Package operation numbers are assigned to all package-defined operations when a
class definition file is compiled. These package operation numbers are stored in the
package’s PackageOperationNumbers.xh file. Magic Developer has a separate
instance of this file for each DataRover 840 platform.

For every system or package operation number, a constant of the form
operation_OperationName is defined. To specify an operation number as the
value for a field in instance definition file, use this constant. For example

operation: operation_ShowOrHide;

Files
A field can extract its value from a file with the include keyword. For example, it
may be more convenient to store the data for an image in a separate file and refer to
it indirectly. The include keyword has three syntax variants.

data: include ‘ fileName’;
data: include ‘ fileName’ start_offset;
data: include ‘fileName’ start_offset:end_offset;

The first form includes an entire file as the value for a field. The second form uses
the begin value as an offset into the file. The third form uses both begin and end to
limit the portion of the file to extract. The end offset is not inclusive. For example,

data: include ‘table’ 0:32;

includes bytes 0 through 31 of the file table .
Icras, Inc. Confidential Guide to Development Tools 95

Instance definition file Chapter 6 Object Tools
long
The following lines supply values for fields that are 32 bits in length.

myLong: 6;
viewFlags: 0x11005200;

The first value is an integer number and the second value is a hex value that is 32 bits
in length.

short
The following line supplies a value for a field that is 16 bits in length.

myShort: 6.s;

byte
The following line supplies a value for a field that is 8 bits in length.

myByte: 6.b;

Booleans
The following line supplies a value for a field that is 1 bit in length.

autoActivate: true; // or false

Strings
Strings can include ASCII text, special characters or Unicode constants.

name: 'Hello World';

Strings can include the following escape characters:

The best way to include text in a package is with a text object. Fields that store Text
objects may be specified in line, however, so the definition above is exactly equivalent
to

name: (Text HelloWorld);
instance Text HelloWorld;
 text: 'Hello World';
end instance;

Fixed
A Fixed value is 32 bits in length with 16 bits of integer and 16 bits of fractional data.

width: 1.0; // hex equivalent: 00010000

String Description

\n new-line

\t tab

\’ single-quote

\\ back slash

\udddd Unicode constant
96 Guide to Development Tools Icras, Inc. Confidential

Chapter 6 Object Tools Instance definition file
Hexadecimal data
The object compiler accepts both the $ and 0x conventions to indicate a string of
characters to be interpreted as hexadecimal.

object: $00A6E27C;

or

object: 0x001A5000;

Extra data
Many objects store unformatted data as hex strings in their extra data (the variable
length portion of an object that can exist in addition to its fields). Objects like images
and cards often have extra data.

data: $0400 007F FE40 F700 031F FFFF E4F9 000A \
1701 FD40 017A 0000 01AA A4FD 000E 0FD0;

Pixels
Positional data is specified with pixels. A pixel is the basic image unit of a graphics
display.

Pixel values are represented by using angle brackets. The value between the <> is a
fixed value that includes a decimal point. For example,

height <28.0>; // 28 pixels recommended

The Package Development Guide contains more information on the Magic Cap
imaging model.

Dot
An object can store a location on the DataRover 840’s display with a Dot value. The
value is represented as horizontal and vertical coordinates in a coordinate system
with the origin in the center of the display.

location: <20.0,30.0>;// x-y

The location of a Dot is specified in pixels.

Box
A Box is a rectangular region of the Magic Cap DataRover 840’s display. The value
is represented as a set of four pixels.

region: <5.0, 40.0, 80.0, 90.0>; // left, top, right, bottom
Icras, Inc. Confidential Guide to Development Tools 97

Magic Script Chapter 6 Object Tools
Magic Script
Scripting for objects has been changed for Magic Cap Rosemary by replacing the old
Magic Script with a new language that is compiled at package build-time. This
section describes the script language, the Java virtual machine byte codes its script
interpreter uses, and the underlying object format its scripts use.

Editing scripts
You can edit scripts in place in instance definition files. They’ll be assembled into
their old familiar unreadable format as part of the build process. If your script has
syntax errors, you’ll hear about them when your object definition file is compiled.

You can use the term script when you attach scripts to objects. Example:

Instance Button makeLikeThis 'Sounds like'
operation script overrides Action: (script scriptTag);

What a script looks like
Here’s what a script’s skeleton looks like:

script scriptTag ;
 [script prototype is prototype ;]

 script statements
end script;

If a script omits its prototype statement, it is assumed to have the same prototype as
method Action, which takes a Reference and returns void. Scripts must specify their
prototypes if the method they’re attached to has a different prototype.

If a script needs to return something, it must include a “return integer” or “return
object” statement. Otherwise, a return statement is optional. Scripts can have more
than one return statement.

Script statements must end with semicolons.

What a prototype looks like
You’ll need to provide prototypes for all the operations you call from your script.
And if the method you’re scripting has a prototype different from Action’s
prototype, you’ll need to prototype your script too. Method and script prototypes
look like this:

[(argument-type1, argument-type2, ...) -> return-type]

The allowed types are:

• void

• UnsignedByte

• SignedByte

• UnsignedShort
98 Guide to Development Tools Icras, Inc. Confidential

Chapter 6 Object Tools Magic Script
• SignedShort

• Unsigned

• Signed

• Reference

Here are some examples:

[(Reference, Reference) -> void] Takes two parameters (probably self plus
 another object), and returns nothing.
[() -> void] Takes nothing, returns nothing.
[(Reference, Unsigned) -> Takes an object and an unsigned number
Reference] and returns an object.
[(Reference, Reference, You're calling PerformWithConfirmation
Reference, Unsigned, Reference, and don't try to deny it.
Reference, UnsignedByte) -> void]

Stack operations
Most script operations expect to find parameters stored on a push-down stack in
memory, and many return a result value by leaving it on the stack. So the most
primitive operations simply move values onto and off of the stack.

push constant
push (ClassName objectInstanceTag)
push i IndexicalName
push nilObject
push self
push integer
push 0x longHexValue

Use push to push objects and numbers onto the stack.

Refer to objects using the format your object definition file uses. Push a named
object onto the stack like this: push (EditWindow chooseANameWindow) . You
can also use indexical names: push iCurrentUser .

You can also push numbers onto the stack. Use the form push 27 to push a byte or
a short onto the stack. Prepend 0x before your number in hex to push a long onto
the stack.

pop

Pop with no arguments discards the top item on the stack.

pop into variable index

Pop the top of the stack into the variable numbered index .

push variable index

Push the variable numbered index onto the top of the stack.

push argument index

Push the given argument to the script onto the stack.
Icras, Inc. Confidential Guide to Development Tools 99

Magic Script Chapter 6 Object Tools
If a script takes more than just self as an argument, the additional arguments are
stored in script variables. For example, if you’ve scripted Touch for some object,
you’ll get the touchInput parameter by calling push argument 1 .

push argument 0 is equivalent to push self .

dup

Duplicate the top item on the stack.

swap

Swap the top two items on the stack.

copy into variable index

Copy the top item on the stack into the numbered variable.

goto label

Jump to the named label. Labels can’t include white space.

call MethodName prototype
call intrinsic_ IntrinsicName prototype

Call a Magic Cap method. The method has the given prototype. Before calling the
method, make sure you’ve pushed the required arguments onto the stack in the
correct order. Push in order from left to right.

After the call completes, the result will be on the top of the stack. The arguments are
removed from the stack.

Suppose you need to write a script that does the equivalent of this rather common
Magic Cap statement:

personWhoWontBeMissed = At(gotThemOnMyList, 3)

You’d first push the arguments to At onto the stack, then call At. Your script would
look like this:

push (ObjectList gotThemOnMyList);
push 3;
call At [(Reference, Unsigned) -> Reference];

If you’re calling an intrinsic, you must refer to it as intrinsic_IntrinsicName .
To make your script honk, you’d write this line:

call intrinsic_Honk [() -> void];
100 Guide to Development Tools Icras, Inc. Confidential

Chapter 6 Object Tools Magic Script
Comparisons
if equal, goto label

If the top two items on the stack are equal, branch to the named label. Otherwise,
continue with the next instruction. This statement removes the top two items from
the stack.

if not equal, goto label

If the top two items on the stack aren’t equal, branch to the named label. This
statement removes the top two items from the stack.

if 0, goto label

If the top item on the stack is equal to zero, branch to the named label. The top item
is removed from the stack.

if not 0, goto label

If the top item on the stack is not zero, branch to the given label. The top item is
removed from the stack.

if < 0, goto label
if <= 0, goto label
if >= 0, goto label
if < 0, goto label

Compare the top item on the stack to zero. If the comparison is true, branch to the
given label. The top item is removed from the stack.

if nilObject, goto label

If the top item on the stack is nilObject , branch to the given label. The top item
is removed from the stack.

if not nilObject, goto label

If the top item on the stack is not nilObject , branch to the given label. The top
item is removed from the stack.

Arithmetic and logical operations
add

Add the top two items on the stack. The two items are replaced on the stack by the
result.

subtract

Subtract the top item from the second item on the stack. The two items are replaced
on the stack by the result.

To compute a - b, you’d write these script lines:

push a;
push b;
subtract;

multiply
Icras, Inc. Confidential Guide to Development Tools 101

Magic Script Chapter 6 Object Tools
Multiply the top two items on the stack. The two items are replaced on the stack by
the result.

divide

Divide the second item on the stack by the first item. The two items are replaced on
the stack by the result.

To compute a / b, you’d write these script lines:

push a;
push b;
divide;

remainder

Divide the second item on the stack by the first item and return the remainder. The
two items are replaced on the stack by the result.

To compute a mod b, you’d write these script lines:

push a;
push b;
remainder;

negate

Change the sign of the number on the top of the stack. The number is replaced by
its opposite on the stack.

bitwise and

Compute a bitwise and of the top two items on the stack. The top two items on the
stack are replaced by the result.

bitwise or

Compute a bitwise or of the top two items on the stack. The top two items on the
stack are replaced by the result.

bitwise xor

Compute a bitwise exclusive or of the top two items on the stack. The top two items
on the stack are replaced by the result.

return
return object
return integer

Clear the stack and return. return object and return integer return the item
on the top of the stack and claim that the top is of the given type.

If your script doesn’t need to return anything, you don’t need to include a return
statement. If your script’s prototype says it returns something, you must end your
script with return integer or return object.
102 Guide to Development Tools Icras, Inc. Confidential

7
Package Localization

Magic Cap provides support for internationalization based on Unicode. Icras, Inc.
can create localized versions of Magic Cap for different international markets while
Magic Cap package developers can develop localized versions of their packages for
these different markets.

The key to developing a localizable Magic Cap package is to isolate localizable
elements so that the package can be localized for different languages without the need
for source code modification. Magic Developer includes localization tools that help
package developers separate the tasks of feature development and localization.

Preparing packages for localization
Most of the work done to support localized Magic Cap packages is done by the
system software and Magic Developer’s localization tools. Here are a few guidelines
to developing localizable Magic Cap packages:

• Don’t use C or Pascal strings in your package’s source code for user-visible text.
Instead, use text objects because they can be easily identified and localized with
Magic Developer’s conversion scripts.

• Don’t make assumptions about the specific location of your package’s viewable
objects. You may need to move and resize viewable objects for convenient
reading.

• Don’t make assumptions about the specific visual appearance of your package’s
viewable objects. You may find it necessary to change the images for viewable
objects.
Icras, Inc. Confidential Guide to Development Tools 103

Localization files Chapter 7 Package Localization
Localization files
The process of localizing a Magic Cap package involves several different files:

• An object instance definition file describes the static objects used by a package. This
includes all the text objects and the size and placement of viewable objects.

• A phrase file describes modifications made to an object instance definition file.
This file is combined with other Magic Cap objects in the package build process
to create a localized version of a package.

Using phrase files
Phrase files let you modify strings and other objects in your object definition files to
accommodate a different locale. For example, if one image is appropriate for the
Japanese locale and another image is appropriate for the US locale, you may place
each image in a separate phrase file and it will be built into the package for that
locale.

Phrase files are named Locale .Package.Phrases , where Locale specifies the
name of the country for which the package is targeted. For example,
Japan.Package.Phrases and USA.Package.Phrases are typical phrase files.

Compiling with phrase files
If you are creating a package for use only in the United States, you do not need to
compile with a phrase file, although you can optionally specify one. If you are using
the package in any other country, you must compile with a phrase file.

Magic Developer provides two ways to prevent a package from compiling with a
phrase file:

• Specify the following switch in the makefile:

-no-require-phrases

• Specify the following statement in the Locale .Package.Phrases file:

dont require phrases for textual fields

To allow a phrase file when you compile, remove or comment both of these
statements. Magic Developer then uses the phrase file associated with the locale you
specify when you build the package. See “How to build a package” on page 17 for
information about choosing a locale when you compile.
104 Guide to Development Tools Icras, Inc. Confidential

Chapter 7 Package Localization Localizing text
Phrase file syntax
A phrase file describes the modifications that you want to make to an instance
definition file—an .odef file. The phrase file contains three-line records separated
by blank lines. Following is the syntax for the phrase file entries:

phrase for ObjectName field FieldName
replace OriginalValue
with NewValue ;

The first line specifies the name of the object and field of the instance definition to
which the record applies. The second line specifies the original value of the object
you want to modify. The third line, and any other lines, if necessary, specify the new
value for the modified object.

For example, the following phrase replaces the value of the field text of the object
packageSceneInformation with the value of the with string:

phrase for packageSceneInformation field text
 replace 'Yer guide to AhoyWorld\nThem seamen shout \u2018ahoy\u2018.'
 with 'About Hello World\n\u2018Hello World\u2019 is landlubberese

for \u2018 Ahoy.\u2019';

Including another phrase file
Use typical C++ syntax to include an additional phrase file. For example, to include
the file Resizing.phrases , enter the following line in your main phrase file:

#include "Resizing.phrases"

This line has the same effect as placing the actual content of Resizing.phrases
where this #include line appears. The path of the phrase file is relative to the
including file’s path. Files can be nested, so an included file can also contain an
#include line.

Localizing text
Much of the effort in localizing a Magic Cap package is in translating text strings
from the source language to the target language. Localizing the text in a Magic Cap
package is a two-step process:

• Create a phrase file for the target locale.

• Translate the strings in the phrase file.

The rest of this section discusses these procedures.
Icras, Inc. Confidential Guide to Development Tools 105

Localizing text Chapter 7 Package Localization
Creating a phrase file
When you compile a localized package with an empty phrase file, Magic Developer
displays an error for each text string that you need to replace. The error message
looks similar to the following:

D:\MagicDeveloper\samples\HelloWorld\Objects.odef (22) :
Error: Missing phrase file entry for name of object 'Main.contents'.

phrase for Main.contents field name
replace 'HelloWorld'
with '<L>HelloWorld';
==== If the entry should not be translated, add the following lines.
phrase for Main.contents field name
replace 'HelloWorld'
with 'HelloWorld';

The error message shows two possible replacements for each text string:

• A new string that begins with an <L> to indicate that it must be translated.

• An identical string that you use if the original text string does not need
translation.

You can copy and paste the appropriate replacement for each string into your empty
phrase file. Each entry in the phrase file must have three lines: the phrase statement,
the replace statement, and the with statement.

For example, suppose you want to localize the HelloWorld sample package for a
release in Japan:

1. Launch Microsoft Visual C++ and open the workspace file for the HelloWorld
package.

2. Choose Build Set Active Configuration, then specify the configuration.

For example, choose Apollo Japan Release.

3. Choose File Open, then open the phrase file for Japan,
Japan.Package.Phrases .

4. Place a // comment before the following line:

dont require phrases for textual fields

5. Build the package by choosing Build Build, or by pressing F7.

Microsoft Visual C++ displays an error for each missing phrase in the Build
window.
106 Guide to Development Tools Icras, Inc. Confidential

Chapter 7 Package Localization Localizing text
6. Create a new phrase file by copying the replacement strings from the Build
window and pasting them into the Japan.Package.Phrases file.

When you are finished, the new phrase file should look similar to the following:

...then paste the replacement
phrase into the new phrase
file

Select a replacement
phrase in the Build
window and copy it
to the clipboard...

The finished phrase file
contains all the
replacement phrases,
indicated with <L>
markers
Icras, Inc. Confidential Guide to Development Tools 107

Localizing text Chapter 7 Package Localization
7. Build the package again.

If you have correctly replaced every phrase, Microsoft Visual C++ displays no
more errors.

If you run this package, you’ll see the <L> strings displayed in the application. These
<L> strings indicate where the translated text will appear.

Translating the strings
After you create the replacement phrase file, the strings are ready to be translated.
When you deliver the file for translation, specify that any string which begins with
an <L> marker should be localized.

After the strings are translated, convert them into Unicode and then build the
package to confirm that you do not receive any errors.

For example, suppose you want to finish localizing the strings in the
Japan.Package.Phrases file you created in “Creating a phrase file” on page 106:

1. Translate the strings marked with an <L> in Japan.Package.Phrases .

2. Convert the translated strings into Unicode.

3. Build the localized package with the new phrase file.

4. Test the localized package. Make sure you use the correct localized version of
Magic Cap Simulator.

Use the <L> characters to help you debug your localized package. If a string in your
package still contains the <L> characters, you know that the string was never
translated.
108 Guide to Development Tools Icras, Inc. Confidential

Chapter 7 Package Localization Modifying viewable objects
Modifying viewable objects
When you localize a package, you may need to change the size and location of
viewable objects, and also the image they display. You can make these changes in
Construction mode in the simulator. First dump the original object to the log file so
you have a record of it, make any necessary modifications in the simulator, then
dump the finished object.

You can use the code you dumped to the log file as the basis for the entries you need
to make in the phrase file. For example, suppose you want to resize the greeter
object in the HelloWorld sample file. When you open the log file, the code for this
modified object looks similar to the following:

You need to change this code so it uses the proper syntax for the phrase file. Each
entry for an object modification in the phrase file must have three lines. For example,
code for the resized greeter object in the HelloWorld sample would look like the
following in the phrase file:

phrase for Main.greeter field contentSize
replace <90.0,90.0>
with <180.0,90.0>;

In this example, the first line specifies the name of the object, the second line
specifies the original size of the object, and the third line specifies the new value for
the size.

The log file contains code for
the original, unmodified
object...

...and code for the modified
object
Icras, Inc. Confidential Guide to Development Tools 109

Modifying viewable objects Chapter 7 Package Localization
The following procedure shows you how to modify a viewable object for localization:

1. Build a localizable Magic Cap package.

See “How to build a package” on page 17.

2. Launch the package in Magic Cap Simulator.

See “How to test a package” on page 18.

3. Display the scene with the viewable object you want to modify.

4. Start construction mode.

See “Turning on construction mode” on page 38.

5. Dump the unmodified object into the log file.

See “Dumping single objects” on page 54.

6. Use the move and stretch tools to modify the viewable objects to match the
placement and size needed for the new locale.

See “Move tool” on page 50 and “Stretch tool” on page 50.

7. Dump the modified object into the log file.

8. In Microsoft Visual C++, use the FixUpLogFile macro to open a copy of the log
file.

See “Opening a copy of the log file” on page 64.

9. Use the information in the log file to modify the phrase file.

10. Rebuild the localized package.

11. Test the localized package.
110 Guide to Development Tools Icras, Inc. Confidential

Index

Symbols
.cdef files 23, 83, 92
.cpp files 24
.make files 25
.odef files 22, 92

A
abstract classes 87
add statement 101
arithmetic operations 101
attributes

defining 88
authoring tools 48

B
bitwise and statement 102
bitwise or statement 102
bitwise xor statement 102
borders 46
Bowser Jo 55–58

launching 56
searching in 57

breaking into debugger 75

C
call statement 100
.cdef files 23, 83, 92
class definition (.cdef) files 23, 83

defined 82
example 92

class hierarchy, defined 82
classes

abstract 87
browsing in Bowser Jo 55–58
defined 82
defining 23, 83, 92
exporting 91
extra keyword 86
methods for 24
mixin 87

clip art (stamps) 43
cloning packages 12
cold boot 30
colors 45
comparison statements 101
components 43
Icras, Inc. Confidential
construction mode 37
modifying viewable objects in 28
turning on 38

construction tools 37
displaying 39

copy statement 100
copy tool 50
coupons 41

text 42
.cpp files 24
creating packages 15
custom debugging macros 74

D
debugging 51, 52

breaking into debugger 75
class information 69
custom macros for 74
in Developer Studio 60
examining objects and indexicals 67
in GDB 76
log files and 64
Magic Developer toolbar commands for 60
memory clusters 71
memory usage 70
operation information 69
running Simulator tests 66
stepping into dispatch cells 73
tools for 59–79

decompiling objects 93
Developer Studio, debugging in 60
development tools, displaying 33
Discipline menu, Magic Cap Simulator 35
divide statement 102
Dump Object window 67
dumping objects 54, 93
dup statement 100
dynamic objects, defined 82

E
Edit menu, Magic Cap Simulator 34
Examine menu, Magic Cap Simulator 34
exporting interfaces 91
extra keyword 86
Guide to Development Tools 111

Index
F
fields

defined 82
defining 88
initializing 94

File menu, Magic Cap Simulator 33
files

class definition (.cdef) 23, 83, 92
inserting in projects 63
localization 104
.make 25
object instance definition (.odef) 22, 92
opening in projects 63
phrase 22, 104, 106
removing from projects 63
source code (.cpp) 24

G
GDB

debugging in 76
examining objects with 77
launching 76
Magic Developer extensions to 78
online help for 79

goto statement 100, 101

H
Hardware menu, Magic Cap Simulator 34
hierarchy, object 94

I
if statement 101
implementation 91

defined 82
indexicals 91

debugging 67
examining in Dump Object window 67
exporting 91
initializing 95

inheritance 85
defined 82

Inspector 51, 52
instance definition (.odef) files 22, 92
interfaces

exporting 91
intrinsics, exporting 91

L
line styles 47
localizing packages 103–110

files for 104

modifying viewable objects 109
phrase files 104, 106
preparation 103
text string localization 105

log files
menu for 37
opening 64
preferences for 65
writing messages to 75
writing to 34

Log menu, Magic Cap Simulator 37
logical operations 101

M
Magic Cap

localizing 103–110
overview of software packages 7
terminology 82

Magic Cap Simulator 33–54
construction tools 37
menus 33
overview 8

Magic Developer
building software packages with 11–31
localization tools 103–110

Magic Hat window 40
accessing for single operation 39
borders 46
colors 45
components 43
coupons 41
extras 47
shadows 47
sounds 46
stamps 43
text styles 46

Magic Internet Kit 27
Magic Script 98
.make files 25
makefiles

creating new 63
customizing 26
default 26
defining variables in 26
extra dependencies 27
Magic Internet Kit and 27

memory, examining
clusters 71
heaps 72
non-relocatable 72
usage 70

methods
defined 82
implementation 91
112 Guide to Development Tools Icras, Inc. Confidential

Index
overriding 90
mixin classes 87
modems, enabling 34
move tool 50
multiply statement 101
MyHelloWorld package

building 11
MyHelloWorld.cdef file 22
MyHelloWorld.cpp file 22
MyHelloWorld.make file 22
Objects.odef file 22

N
negate statement 102
numbers, operation 95

O
object inspector, displaying 34
object instance definition (.odef) files 22, 92
object-oriented programming 81–102

terminology for 82
objects

converting to text 54
copying 50
debugging 51, 52, 67
decompiling 93
defined 82
dumping 54, 93
dynamic 82
examining 49
hierarchy of 94
instance definitions 22, 92
modifying layout of 48
moving 50
references for 68
scripting 98
static 82
stretching 50
syntax 83
tools for 81–102
validating 35
viewable

localizing 109
modifying 28

Objects.odef file 22
.odef files 22, 92
operation numbers 95
OperationNumbers.xh file 95
operations

defining 89
exporting 91
viewing information 69

overrides keyword 90

overrides statement 90

P
package globals 90
Package Viewer 61
PackageOperationNumbers.xh file 95
packages

building 11–31
cloning 12
creating new 15
debug builds of 60
developing 7
displaying contents of 61
downloading to storage cards 30
files for 22
formats 21
localizing 103–110
opening 33
overview 7
overview of development 12
specifications for building 17
testing 18

phrase files 22, 104, 106
pop statement 99
projects

creating new makefiles 63
inserting files in 63
opening files in 63
removing files from 63

push statement 99

R
remainder statement 102
Reset Tests menu, Magic Cap Simulator 37
return statement 102

S
scripts 98

comparisons 101
editing 98
prototype for 98
skeleton for 98
stack operations 99

shadows 47
shapes 47
simple intrinsics, defining 90
sounds 46
source code (.cpp) files 24
stack operations 99
Stamper 43
stamps 43
static objects, defined 82
Icras, Inc. Confidential Guide to Development Tools 113

Index
Step Into command 73
storage cards, downloading packages to 30
stretch tool 50
subclass, defined 85
subtract statement 101
superclass, defined 85
swap statement 100
syntax for objects 83
system test, performing 35

T
terminology 82
Testing dialog box 66
Testing menu, Magic Cap Simulator 35
testing packages 18
text

coupons 42
localizing 105
styles 46

tinker tool 49
Tool holder 48
tools

authoring 48
localization 103–110
tinker 49
Tool holder 48

U
user-interface

building blocks for 28
tools in Magic Hat window 43
viewable objects 28, 109

V
variables, defining in makefiles 26
viewable objects

localizing 109
modifying 28
114 Guide to Development Tools Icras, Inc. Confidential

	Guide to Development Tools
	Introduction
	Developing software packages
	Microsoft Visual C++
	Magic Cap Simulator
	Construction tools
	Inspector

	Bowser Jo
	Debugging tools
	Object Tools
	Magic Script

	Localization tools

	Building Software Packages
	Overview of package development
	Building a simple package
	How to clone a package
	How to create a new package
	How to build a package
	How to test a package
	Troubleshooting

	Package Formats
	Simulator debug packages
	Simulator release packages
	MIPS packages

	Inside a Magic Cap package
	Object instance definition file
	Class definitions
	Source code
	Makefile

	Customizing makefiles
	Default makefile
	Defining variables
	Using the Magic Internet Kit
	Extra dependencies

	Modifying viewable objects with construction tools
	Downloading a package to a storage card
	How to perform a cold boot
	How to download a package
	Downloading multiple packages

	Magic Cap Simulator
	Magic Cap Simulator menus
	File menu
	Edit menu
	Hardware menu
	Examine menu
	Discipline menu
	Testing menu
	Log menu
	Reset Tests menu

	Construction tools
	Turning on construction mode
	The Magic Hat window
	Coupons
	Stamps
	Components
	Colors
	Sounds
	Borders
	Text styles
	Shadows
	Extras

	Tool holder
	Authoring
	Debugging with the Inspector

	Inspector
	Dumping single objects

	Bowser Jo
	Launching Bowser Jo
	Using Bowser Jo
	Searching alphabetically
	Searching by string matching

	Debugging Tools
	Debugging in Microsoft Visual C++
	Creating a debug build
	Summary of Magic Developer toolbar commands
	Displaying and managing the contents of a package
	Displaying package organization
	Managing project files

	Opening a copy of the log file
	Setting log file preferences
	Running Simulator tests
	Examining objects and indexicals
	About the object reference

	Viewing operation information
	Viewing class information
	Examining memory usage
	Examining memory clusters
	Examining heaps and non-relocatable memory

	Stepping into a dispatch call
	Custom debugging macros
	Breaking into the debugger
	Writing messages to the log file

	Debugging in GDB
	Launching GDB
	Examining objects with GDB
	The Magic Developer extensions to GDB
	Using the GDB online help

	Object Tools
	Terminology overview
	Object syntax
	Class definition file
	Class definition syntax
	Inheritance
	Extra data
	Abstract classes
	Mixin classes
	Defining fields
	Defining attributes
	Defining operations
	Package globals
	Defining simple intrinsics
	Overriding methods
	Method implementation
	Indexicals

	Exporting interfaces
	Example class definition file
	Instance definition file
	Object dumping
	Object hierarchy
	Field initialization statements
	Object reference
	Indexicals
	Operation number
	Files
	long
	short
	byte
	Booleans
	Strings
	Fixed
	Hexadecimal data
	Extra data
	Pixels
	Dot
	Box

	Magic Script
	Editing scripts
	What a script looks like
	What a prototype looks like
	Stack operations
	Comparisons
	Arithmetic and logical operations

	Package Localization
	Preparing packages for localization
	Localization files
	Using phrase files
	Compiling with phrase files
	Phrase file syntax
	Including another phrase file

	Localizing text
	Creating a phrase file
	Translating the strings

	Modifying viewable objects

	Index

